Table of Contents

Preface... 7

Safety Instructions ... 8

1 Designated Use ... 11

2 Introduction ... 12

2.1 Options Available for the CMC 356 Test Set... 12

3 Operating the CMC 356 ... 13

3.1 System Components ... 13

3.2 Safe Use of the Connecting Cables .. 14

3.2.1 Test Lead Adapter for Non-Safety Sockets .. 14

3.3 Regular Test Leads for Safety Sockets ... 15

3.3.1 Terminal adapters ... 15

3.3.2 M4 (0.15") Cable Lug Adapters ... 16

3.3.3 M5 (0.20") Cable Lug Adapters ... 16

3.4 Starting the Test System .. 17

4 Setup and Function .. 19

4.1 Block Diagram ... 20

4.1.1 Voltage Output (Voltage Amplifier) .. 21

4.1.2 Current Output (Current Amplifier) .. 22

4.1.3 Binary / Analog Input (Binary Inputs 1 - 10) .. 23

4.1.4 Binary Output ... 23

4.1.5 AUX DC (DC Power for Test Objects) .. 24

4.1.6 CPU ... 25

4.1.7 Power Supplies (DC-DC) ... 25

4.2 Signal Generation ... 25

4.2.1 Accuracy and Signal Quality ... 26

5 Connections and Interfaces .. 27

5.1 Front Panel Connections ... 27

5.1.1 Generator Combination Socket for VOLTAGE OUTPUT and CURRENT OUTPUT ... 30
5.2 Connections on the Back Panel ... 32
 5.2.1 Ethernet Ports ETH1 and ETH2 .. 32
 5.2.2 ! Button ... 33
 5.2.3 Associate Button.. 33
 5.2.4 Status LED A, B... 34
 5.2.5 Ethernet / Network Settings ... 34
 5.2.6 SELV Interfaces... 36
 5.2.6.1 External Interface ("ext. Interf.") .. 36
 5.2.6.2 LL out 1-6 (Low Level Outputs 1-6) ... 37
 5.2.6.3 LL out 7-12 (Low Level Outputs 7-12) - Option "LLO-2" 37

6 Technical Data ... 39
 6.1 Main Power Supply.. 39
 6.2 Insulation Coordination... 40
 6.3 Outputs .. 41
 6.3.1 Extended Frequency Range .. 42
 6.3.2 Current Outputs .. 43
 6.3.3 Voltage Outputs .. 48
 6.3.3.1 Power Diagram for Three-Phase Operation 49
 6.3.3.2 Power Diagram for Single-Phase Operation 50
 6.3.4 Operational Limits in Conjunction with Mains Supply 51
 6.3.5 Low Level Outputs "LL out" for External Amplifiers 52
 6.3.6 Low-Level Binary Outputs ("ext. Interf.") 54
 6.3.7 Binary Output Relays .. 56
 6.3.8 DC Supply (AUX DC) ... 57
 6.4 Inputs .. 58
 6.4.1 Binary Inputs.. 58
 6.4.2 Counter Inputs 100 kHz (Low Level) ... 61
 6.5 Technical Data of the Ethernet Ports... 63
 6.5.1 The NET-1B Board .. 63
 6.5.2 The NET-1 Board .. 64
 6.6 Environmental Conditions... 65
 6.6.1 Climate.. 65
 6.6.2 Shock and Vibration.. 65
 6.7 Mechanical Data... 65
 6.8 Cleaning.. 65
 6.9 Safety Standards, Electromagnetic Compatibility (EMC) and Certificates 66
 6.10 Option ELT-1 .. 67
6.10.1 General Data ... 68
6.10.2 Analog DC Input (VDC, IDC) ... 69
6.10.3 Accuracy of the Analog DC Input... 70
6.10.4 Measuring Currents ... 71
6.10.5 Accuracy of Binary/Analog Inputs with Option ELT-1 .. 72
6.10.6 Multimeter Mode ... 73
 6.10.6.1 Accuracy of AC Measurements .. 74
 6.10.6.2 Channel Cross-Talk .. 76
 6.10.6.3 Accuracy of Phase Measurement ... 77
 6.10.6.4 Accuracy of Frequency Measurement .. 79
 6.10.6.5 Accuracy of Power Measurement ... 80
6.10.7 Harmonic Analysis ... 84
 6.10.7.1 Accuracy of Frequency Measurement .. 85
 6.10.7.2 Accuracy of Amplitude Measurement ... 86
 6.10.7.3 Accuracy of Phase Measurement ... 87
6.10.8 Transient Recording .. 88
6.10.9 Trend Recording .. 89
6.11 Option LLO-2 (Low Level Outputs) ... 90

7 Increasing the Output Power, Operating Modes .. 91
7.1 Safety Instructions for High Current Output .. 91
7.2 Single-Phase Operation of the CMC 356 .. 92
 7.2.1 1 x 32 A High Burden Mode (L-L-L-L). ... 92
 7.2.2 1 x 64 A High Burden and High Current Mode (L-L) .. 93
 7.2.3 1 x 128 A High Current Mode (LL-LN) ... 94
 7.2.4 Single-Phase Voltage .. 95
7.3 Two-Phase Operation .. 96
 7.3.1 2 x 64 A High Current Mode (LL-LN) ... 96
 7.3.2 2 x 32 A High Burden Mode (L-L) .. 97
7.4 Three-Phase Current Mode with High Burden ... 98
7.5 Operation with External Amplifiers .. 99

8 Troubleshooting .. 101
8.1 Troubleshooting Guide ... 101
8.2 Potential Errors, Possible Causes, Remedies ... 102
8.3 Overheating ... 103
9 CMC 356-Related Products and Accessories 105
 9.1 CMA Current Amplifiers & CMS Voltage Amplifiers .. 105
 9.2 CMControl-6 .. 106
 9.3 Time Synchronization Accessories... 107
 9.3.1 CMGPS .. 107
 9.3.2 CMIRIG-B .. 109
 9.4 100TX to 100FX-SC Converter ... 111
 9.5 Current Clamp C-PROBE1 .. 112
 9.6 Accessories for Meter Testing ... 113
 9.6.1 Scanning Head OSH256 .. 113
 9.6.2 Interface Box IFB256 ... 114
 9.6.3 Scanning Head TK 326 .. 115
 9.6.4 Scanning Head TVS 6.15/1 ... 116
 9.6.5 Adapter Cable for Scanning Heads ... 117
 9.6.6 CMLIB B ... 118
 9.6.7 CMLIB A ... 119
 9.6.8 CPOL Polarity Tester ... 119
 9.6.9 Connection Cable for REF 54x Relays (ABB) with Low Level Signal Inputs 121
 9.6.10 C-Shunt ... 122
 9.7 Wiring Accessories .. 123
 9.7.1 Standard Delivery Scope .. 123
 9.7.2 Optional CMC Wiring Accessory Package .. 124
 9.8 Ordering Information ... 127

Appendix .. 133

Contact Information / Technical Support ... 137

Index ... 139
PREFACE

The purpose of this reference manual is to familiarize users with the CMC 356 test set and to show how to properly use it in various application areas.

The manual contains important tips on how to use the CMC 356 safely, properly, and efficiently. Its purpose is to help you avoid danger, repair costs, and down time as well as to help maintain the reliability and life of the CMC 356.

This manual is to be supplemented by existing national safety standards for accident prevention and environmental protection.

The reference manual should always be available at the site where the CMC 356 is used. It should be read by all personnel operating the test set.

Note: The OMICRON Test Universe software also installs a PDF version of this reference manual. It can directly be opened by a mouse-click from the help topic "User Manuals of OMICRON Test Universe".

In addition to the reference manual and the applicable safety regulations in the country and at the site of operation, the usual technical procedures for safe and competent work should be heeded.

Note: This reference manual describes the CMC 356 hardware - that is, the physical test set. In order to get familiar with the software for controlling and configuring the CMC 356, please refer to the software manuals and/or the OMICRON Test Universe Help.

For Your Safety Please Note

The CMC 356 test set can output life-hazardous voltages and currents. Throughout the manual, this symbol indicates special safety-relevant notes/directions linked to the possibility of touching live voltages and/or currents. Please thoroughly read and follow those directions to avoid life-hazardous situations.

This symbol indicates potential hazards by electrical voltages/currents caused by, for example, wrong connections, short-circuits, technically inadequate or faulty equipment or by disregarding the safety notes of the following sections.
SAFETY INSTRUCTIONS

Before operating the CMC 356 test set, carefully read the following safety instructions.

Only operate (or even turn on) the CMC 356 after you have read this reference manual and fully understood the instructions herein.

The CMC 356 may only be operated by trained personnel. Any maloperation can result in damage to property or persons.

Rules for Use

• The CMC 356 should only be used when in a technically sound condition. Its use should be in accordance with the safety regulations for the specific job site and application. Always be aware of the dangers of the high voltages and currents associated with this equipment. Pay attention to the information provided in the reference manual and the software documentation.

• The CMC 356 is exclusively intended for the application areas specified in section 1, "Designated Use" on page 11. The manufacturer/distributors are not liable for damage resulting from unintended usage. The user alone assumes all responsibility and risk.

• The instructions provided in this reference manual and the associated software manuals are considered part of the rules governing proper usage.

• Do not open the CMC 356 or remove any of its housing components.

Orderly Practices and Procedures

• The reference manual (or its "electronic PDF pendant", which is installed to your computer with the OMICRON Test Universe software) should always be available on site where the CMC 356 is used.

Note: The OMICRON Test Universe software also installs a PDF version of this reference manual. It can directly be opened by a mouse-click from the help topic "User Manuals of OMICRON Test Universe". The Test Universe Help can be launched by clicking Help on the Start Page.

• Personnel assigned to using the CMC 356 must have read this reference manual and fully understood the instructions herein.

• Do not carry out any modifications, extensions or adaptations at the CMC 356.
Operator Qualifications

- Testing with the CMC 356 should only be carried out by authorized and qualified personnel.
- Personnel receiving training, instruction, direction, or education on the CMC 356 should remain under the constant supervision of an experienced operator while working with the equipment.

Safe Operation Procedures

- Follow the instructions in sections 3.2 and 3.4 that describe the safe use of the connecting cables and how to set the CMC 356 into operation.
- The CMC 356 must only be used from a power outlet that has a protective earth.
- Do not block the access to safety-relevant test set components like the main power switch or the power cord. In cases of an emergency, these components need free and quick access.
- Do not connect any of the front panel VOLTAGE/CURRENT OUTPUTS 1 ... 3 or VOLTAGE OUTPUT 4, respectively, to protective earth. The N sockets, however, may be connected to protective earth.
- When connecting to the banana plug sockets, only use cables with 4 mm/0.16 " safety banana connectors and plastic housing. Always insert plugs completely.
- Before connecting and disconnecting test objects, verify that all outputs have been turned off. Never connect or disconnect a test object while the outputs are active.
- When disconnecting power supply cables or test leads, always start from the device feeding the power or signal.
- All sockets on the front panel are to be considered dangerous with working voltages up to 300 V_{rms}. Only use cables that meet these respective requirements to connect to the equipment.

- Red Signal Light ⚠:
 If the voltage on any of the four voltage outputs or on the "AUX DC" output exceeds 42 V, the associated signal light lights up.
- Do not insert objects (e.g., screwdrivers, etc.) into the sockets or into the ventilation slots.
- Do not operate the CMC 356 under wet or moist conditions (condensation).
• Do not operate the CMC 356 when explosive gas or vapors are present.

• The SELV interface (SELV = Safety Extra Low Voltage) of the CMC 356 - "Host Interf." or “ETH1”, "LL out" (Low Level Outputs), "ext. Interf." - should only have external devices connected that meet the requirements for SELV equipment according to EN 60950 or IEC 60950.

• For applications drawing DC current: The load may not exceed 3 mH because of dangerous feedback current.

• When setting up the CMC 356, make sure that the air slots on the back, top, and bottom of the test set remain unobstructed.

• Voltages up to 1 kV can be present inside the CMC 356! Therefore, opening the CMC 356 is only permitted by qualified experts either at the factory or at certified external repair centers.

• If the CMC 356 is opened by the customer, all guarantees are invalidated.

• CMC 356 Ethernet functionality (see section 5.2.1, "Ethernet Ports ETH1 and ETH2" on page 32):
 - It is a product of laser class 1 (EN 60825, IEC 60825).
 - Connect ETH1 only to Ethernet ports.

• If the CMC 356 seems to be functioning improperly, please contact the OMICRON Technical Support (see section "Contact Information / Technical Support" on page 137).

Changing the Power Fuse

• Unplug the power cord between the test set and the power source.

• The fuse is located at the back of the test set.

• Fuse type: T12.5 AH 250 V (wire fuse 5 × 20 mm).

For safety reasons please use only fuse types recommended by the manufacturer. Refer to 6.1, "Main Power Supply" on page 39 for more information.
1 **DESIGNATED USE**

The *CMC 356* is a computer-controlled test set for the testing of:

- protection relays
- transducers
- energy meters
- PQ (power quality) analyzers.

In addition to the test functions, optional high-performance measurement functions [0 Hz (DC) ... 10 kHz] for ten analog inputs are available.

The *CMC 356* is part of the OMICRON *Test Universe* which, in addition to the physical test set, consists of a test software for a computer with Windows\(^1\) operating system, and, when needed, external voltage and/or current amplifiers, GPS or IRIG-B synchronization units or other accessories.

Features of the *CMC 356*:

- Output of test quantities:
 - 4 × voltage
 - two galvanically separated three-phase current outputs.
- Capability of protection testing with IEC 61850 devices.
- Control of external amplifiers (up to 12 additional test signals) through the low-level interface.
- Supply of DC voltages to the test object.
- Output of binary signals.
- Capture of binary signals and counter impulses.
- Option ELT-1:
 Measurement and analysis of DC and AC voltages and currents by means of a clip-on probe (refer to section 6.10, "Option ELT-1" on page 67) or a measurement shunt.

Any other use of the *CMC 356* is considered improper and may result in damage to property or persons.

\(^{1}\) Windows is a US registered trademark of Microsoft Corporation.
2 INTRODUCTION

The CMC 356 is a part of the OMICRON Test Universe which, in addition to the physical test set, consists of a test software for a computer with Microsoft Windows operating system, and, when needed, external voltage and/or current amplifiers, GPS or IRIG-B synchronization units or other accessories (refer to section 9, "CMC 356-Related Products and Accessories" on page 105).

This reference manual describes the hardware of the CMC 356. The configuration and control of the CMC 356 is carried out by the test software of the OMICRON Test Universe. For more detailed information, please read the user manuals and the OMICRON Test Universe Help.

Note: The OMICRON Test Universe software also installs a PDF version of this reference manual. It can directly be opened by a mouse-click from the Test Universe Help topic "User Manuals".

2.1 Options Available for the CMC 356 Test Set

The following options are available for the CMC 356 test set:

• **ELT-1**

 This hardware option enables:

 • Measurement of analog signals using the combined BINARY / ANALOG INPUT sockets.

 • High-precision measurement of DC signals using the ANALOG DC INPUT sockets.

 For detailed information, please refer to section 6.10, "Option ELT-1" on page 67).

• **LLO-2 (low level outputs 7-12)**

 SELV interface connector holding two independent generator triples (SELV = Safety Extra Low Voltage). These six additional high accuracy analog signal sources can serve to either control an external amplifier or to directly provide small signal outputs.

 For more information please refer section 6.3.5, "Low Level Outputs "LL out" for External Amplifiers" on page 52.
• FL-6
In a number of countries (e.g., Japan), the export of multiphase generators able to output steady signals with a frequency between 600 Hz and 2000 Hz is not permitted.

The **FL-6** option constraints the maximum fundamental frequency that the test set can generate to 599 Hz. Test sets with the FL-6 option can therefore be exported without any restrictions (refer to 6.3, "Outputs" on page 41).

3 **OPERATING THE CMC 356**

Only operate (or even turn on) the **CMC 356** after you have read this reference manual and fully understood the instructions herein.

3.1 **System Components**

Before operating the **CMC 356** for the first time, use the packing list to verify that all components of the test system are available.

To set the **CMC 356** into operation you need the following components:

- **CMC 356** with (mains) power cable
- Connecting cable **CMC 356 ↔ PC**
- Connecting cable **CMC 356 ↔ test object**
- PC equipped with an Ethernet port and the OMICRON Test Universe software.
3.2 Safe Use of the Connecting Cables

3.2.1 Test Lead Adapter for Non-Safety Sockets

The optional CMC Wiring Accessory Package includes flexible test lead adapters of 5 cm/2 " length with a retractable sleeve (6 x black, 6 x red).

These test leads are to be used as **adapters**, only. They are intended to make the 4 mm/0.16 " banana plugs of the standard test leads fit into non-safety sockets (see illustration above).

Never directly insert one of these retractable sleeves into a **CMC 356** output socket at the front of the test set. This does not comply with the designated purpose of these leads and is contrary to the safety regulations.

Plug **only the regular test leads** of 2.0 m/6 ft. length into the **CMC 356** output safety sockets.
3.3 **Regular Test Leads for Safety Sockets**

Use the regular test leads of 2.0 m/6 ft. length to connect the CMC 356 output to other safety sockets of, for example, amplifiers, test objects or to banana adapters in control cabinets.

![Diagram of Regular Test Leads](image)

3.3.1 **Terminal adapters**

The optional CMC Wiring Accessory Package includes flexible terminal adapters to connect the regular test leads to screw-clamp terminals.

![Diagram of Terminal Adapters](image)

The terminal adapters have blank ends. Therefore, turn off the voltage before connecting these adapters. Always insert an adapter with its blank end into the terminal strip first, and fasten it before connecting it to a test lead.
3.3.2 M4 (0.15”) Cable Lug Adapters

The optional CMC Wiring Accessory Package includes M4 (0.15”) cable lug adapters to connect regular test leads to screw-clamp terminals of SEL/ABB/GE relays (and others).

The cable lugs have blank ends. Therefore, turn off the voltage before connecting such a lug. Always insert the cable lug with its blank end into the terminal strip first, and fasten it, before connecting it to a test lead.

3.3.3 M5 (0.20”) Cable Lug Adapters

The optional CMC Wiring Accessory Package includes M5 (0.20”) cable lug adapters to connect regular test leads to common and most widespread screw-clamp terminal types.

The cable lugs have blank ends. Therefore, turn off the voltage before connecting such a lug. Always insert the cable lug with its blank end into the terminal strip first, and fasten it, before connecting it to a test lead.
3.4 Starting the Test System

The following description assumes that the computer has been set up and that the test software for the OMICRON Test Universe has been installed.

Detailed instructions for installing the software for the OMICRON Test Universe can be found in the software manual "The Concept".

This description refers both to the computer and to the CMC 356. It does not take into consideration any external devices. If the system is driven by external amplifiers, follow the instructions in section 7.5, "Operation with External Amplifiers" on page 99.

When setting up the CMC 356, it is most important to make sure that the ventilation slots remain unobstructed.

Connecting the System Components:

1. Connect the CMC 356 to the PC with the supplied connecting cable:\n - CMC 356: Connector ETH1 at the rear side of the test set
 - PC: Ethernet port (labeled “EtherNET”, “LAN” or similar).

For instructions to help you to incorporate network-capable CMC test sets, such as the CMC 356 into a computer network, please refer to the manual "Network-based CMC Test Sets". This manual is provided in PDF format; its name is Network-based test sets.pdf. It is available on your hard disk at Test Universe installation folder\Test Universe\Doc\.

\[1\] To ensure the required EMC compatibility, we recommended to only use the OMICRON-supplied connecting cable.
2. Connect the *CMC 356* test set to the mains.
3. Turn on both devices.
4. Start the OMICRON *Test Universe* software.
 A comprehensive hardware test is carried out on the *CMC 356*. In the process, switching sounds from relays in the CMC test set can be heard. If any irregularities are determined during the course of this self-test, the software displays a corresponding error message on the PC monitor (refer to section 8, "Troubleshooting" on page 101).
4 Setup and Function

The computer-controlled OMICRON test system employs the concept of a functional division between the software running on the computer and the CMC 356 hardware connected to the test object.

OMICRON Test Universe test software running on the computer
- controls the test signals
- processes measurement data
- creates reports
- generates data entries.

The CMC 356 test set
- creates test signals (currents, voltages, binary signals)
- measures the reaction (analog and binary) from the test object
- supplies DC-current to test objects.
4.1 Block Diagram

Figure 4-1: Main block diagram of the CMC 356

1* Note regarding the hardware option ELT-1:
The hardware option ELT-1 enables the measurement of analog signals using the CMC 356. In the standard configuration (CMC 356 without option ELT-1), the inputs BINARY/ANALOG INPUT 1 - 10 can only be used as binary inputs, and DC inputs are not available.
The block schematic diagram in figure 4-1 shows all externally accessible signals with gray shading. Every gray area represents a galvanic group that is isolated from all of the other galvanic groups.

The power connection ("power supply group") and the connections for "SELV group" (SELV = Safety Extra Low Voltage) are available on the back of the test set. All other gray shaded groups are available on the front of the test set. The safety relevant isolated circuits (power ↔ SELV, power ↔ front plate, and front plate ↔ SELV) are marked as "reinforced isolation" in the block diagram.

4.1.1 Voltage Output (Voltage Amplifier)

![Voltage amplifier](image)

The four voltage outputs have a common neutral N and are galvanically separated from all other outputs of the CMC 356. The two black sockets labeled "N" are galvanically connected with one another.

The voltage amplifier and the current amplifiers are linear amplifiers with DC coupling. The voltage outputs work in two ranges:

- Range 1: 4 x 0 ... 150 V
- Range 2: 4 x 0 ... 300 V

Protecting the Voltage Outputs

All voltage outputs are protected for open circuits, L-N short-circuits, and overload. Should the heat sink overheat, a thermal switch turns off all outputs.

Overload Warning Flagged in the Software

When a voltage output is overloaded, a corresponding warning is displayed in the user interface of the test software of the OMICRON Test Universe (like described in, for example, section 8.3, "Overheating" on page 103).

Do not connect any of the VOLTAGE OUTPUTS 1 ... 3 or VOLTAGE OUTPUT 4, respectively, to protective earth. The N sockets, however, may be connected to protective earth.
4.1.2 Current Output (Current Amplifier)

Figure 4-3: CMC 356 current outputs groups A & B

The current amplifiers are implemented as switched mode amplifiers with DC coupling. With this technology it is possible to achieve high power density in a very compact structure. The DC coupling enables a precise reproduction of transients or DC offsets.

Protecting the Current Outputs

All current outputs are protected for open circuits, short-circuits, and overload. If the heat sink overheats, a thermo switch turns off all outputs. The output sockets are internally protected against currents > 45A_{peak} (32A_{rms}; the CMC 356 switches off with the error message "current on neutral too high").

In non-operative state, relay contacts (as illustrated in figure 5-3) protect the current amplifier from external power by shortening the outputs to N.

Caution: If there is an in-feed from an external source, the current outputs can be damaged or destroyed.

Overload Warning Flagged in the Software

When a current output is overloaded, a corresponding warning is displayed in the user interface of the test software of the OMICRON Test Universe (like described in, for example, section 8.3, "Overheating" on page 103).

Please see also section 7.1, "Safety Instructions for High Current Output" on page 91.
4.1.3 Binary / Analog Input (Binary Inputs 1 - 10)

Figure 4-4: Binary/analog inputs 1 - 10

The ten binary inputs are divided into five groups of two, each group galvanically separated from the others. If the hardware option ELT-1 is installed, all inputs can be configured individually by the software as binary or analog measurement inputs (refer to section 6.10, "Option ELT-1" on page 67).

The input signals are monitored with a time resolution of 100 µs and then evaluated in the CPU.

The binary inputs are configured from the Hardware Configuration module of the OMICRON Test Universe software. When doing so, it can be specified whether the contacts are potential-sensitive or not. When the contacts are potential-sensitive, the expected nominal voltage and pick-up threshold can be set for each binary input.

Moreover, the binary inputs 1 – 10 can be used as counter inputs for input frequencies up to 3 kHz.

More detailed information about the configuration of the binary inputs can be found in the OMICRON Test Universe Help.

4.1.4 Binary Output

Figure 4-5: Binary outputs

Four binary outputs are available for use as potential-free relay contacts.

More detailed information about the configuration of the binary outputs can be found in the OMICRON Test Universe Help.
4.1.5 AUX DC (DC Power for Test Objects)

Test objects that require an auxiliary DC voltage can be fed from the AUX DC output.

The DC voltage that is applied over the AUX DC output can vary from 0 to 264 Volts and is configured using the software. The AUX DC output is galvanically separated from all other outputs.

The power-up default

By means of the test tool AuxDC you can set a so-called power-up default. When the test set is powered-up the next time, the auxiliary DC output is automatically set to this default value. This default value applies until it is deliberately changed again.

Setting a power-up default value means, that immediately after the test set is switched on, this voltage is applied to the auxiliary DC voltage output, regardless whether a computer is connected to it or not.

Caution: The selected voltage can be life-threatening!

Consider storing a power-up default voltage of higher than 0 V a potential danger to future users that may connect other devices to this CMC test set.

We strongly recommend to always set the default value to 0 V before storing the device, or to otherwise attach a warning label to the device housing, such as "This unit outputs an AuxDC voltage of ___V immediately after powering-up".

⚠️ If the voltage on the "AUX DC" output exceeds 42 V, the associated signal light lights up.

More information about the configuration of the AUX DC supply can be found in the OMICRON Test Universe AuxDC Help.
4.1.6 CPU

The CMC 356 CPU (Central Processing Unit) carries out the following tasks:

- Communication with the computer or a network via the Ethernet ports “ETH1” and “ETH2”.
- Digital signal generation for all outputs of the test set (including control signals for external amplifiers).
- Generation of a high-accuracy central clock signal with synchronization options using the CMGPS synchronization unit or the CMIRIG-B interface box (refer to 9.3, "Time Synchronization Accessories" on page 107).
- Monitoring and control of all systems, including external amplifiers, if applicable.

4.1.7 Power Supplies (DC-DC)

An AC/DC converter generates the required DC voltage from 85 to 264 VAC supply voltage (see section 6.1) and ensures adequate EMC filtering.

The power supply to the different modules, that each are part of their own galvanic groups, are implemented using DC-DC converters with reinforced insulation.

4.2 Signal Generation

The generation of sine wave signals with high amplitude and phase accuracy is required in order to achieve output signals with the specified accuracy.

In order to fulfill the requirement for phase-coupled signal sources, signal generation is digitally implemented.

For this, the CMC 356 employs a high-performance digital signal processor (DSP).

With digital signal generation the system is very flexible. An exact correction of the amplitude, offset, and phase can be carried out in a digital manner through the use of device-specific parameters (i.e., gain, offset, and null phase angle on every channel).

The digital correction assures the best possible long-term drift behavior.

In addition to sine waves, any other periodic or transient signal can be generated.
4.2.1 Accuracy and Signal Quality

The CMC 356 is a very precise test set with excellent long-term and temperature drift behavior.

To achieve this accuracy, the philosophy was not only to solve signal generation digitally, but also to implement the distribution of signals to the various modules using digital methods. In doing so, the goal of galvanic separation of the individual generator groups was also achieved without loss of accuracy.

In achieving the amplitude accuracy, the drift behavior (temperature and long-term) is of major importance in the voltage references, the digital-analog converters (DAC), the accurate voltage dividers in the voltage amplifiers, and the current shunts in the current amplifiers.

The actual (typical) data is in general about a factor of 3 better than the guaranteed data.

The associated exact measurement media are required for the assurance of the accuracy in the production. The measurement media used by OMICRON are regularly calibrated by an accredited calibration institute so that tracing to international standards can be assured.
5 CONNECTIONS AND INTERFACES

5.1 Front Panel Connections

AUX DC
Output voltage in 3 ranges from 0 - 264 V; used to supply power to test objects.

VOLTAGE OUTPUT
4 x 300 V\(_{\text{rms}}\) output of the internal voltage amplifier; outputs 1 - 3 also applied to the generator combination socket.

BINARY OUTPUT
Four potential-free relay contacts.

ANALOG DC INPUT (with option ELT-1 only)
- 0 - ±1 mA / 0 - ±20 mA: DC current inputs.
- 0 - ±10 V: DC voltage inputs.

CURRENT OUTPUT
- **Group A**: 3 x32 A\(_{\text{rms}}\) output of the internal current amplifier; also applied to the generator combination socket.
- **Group B**: 3 x32 A\(_{\text{rms}}\) output of the internal current amplifier.

Generator combination socket
8-pole combination socket for VOLTAGE OUTPUT 1-3 and CURRENT OUTPUT A (up to 3 x 25 A max.).

⚠️ Warning indication: **Dangerous Voltage**!
At least one of the output voltages exceeds 42 V.

Power Switch

Binary / Analog INPUT
10 binary inputs in 5 galvanically separated groups.

Hardware option ELT-1:
The inputs can be configured as analog measurement inputs. Without option ELT-1 only binary inputs are available.
Figure 5-2:
Simplified circuit diagrams of binary inputs and outputs (CMC 356 standard, without option ELT-1 installed)

Each binary input can be configured individually for wet or dry operation.

Two inputs (1 + 2, 3 + 4, ...) are one potential group. The inputs grouped in one potential group share a common ground.

Note: For simplified circuit diagrams of the inputs BINARY/ANALOG INPUTS and ANALOG DC INPUT of the CMC 356 with hardware option ELT-1 installed, please refer to Figure 6-20 on page 72.
In non-operative state, relay contacts (as illustrated in figure 5-3) protect the current amplifier from external power by shortening the outputs to N.
5.1.1 Generator Combination Socket for VOLTAGE OUTPUT and CURRENT OUTPUT

The combination socket CURRENT OUTPUT / VOLTAGE OUTPUT simplifies the connection of test objects to the CMC 356. The three voltage outputs (VOLTAGE OUTPUT 1-3) as well as the CURRENT OUTPUT A are wired to the combination socket (refer to table 5-1 on page 31).

![Front view and View onto the connector from the cable wiring side]

WARNING:

The connections on the socket are dangerous when the test set is turned on.

Follow the safety information provided at the beginning of this manual when connecting the generator combination sockets.

If a dangerous voltage (greater than 42 V) is applied to the socket, a warning indicator lights above the socket.

For currents greater than 25 A, the test object (load) should be exclusively connected to the 4 mm/0.16 " banana sockets and not on the generator connection socket.
Table 5-1: Pin layout

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-</td>
<td>VOLTAGE N</td>
</tr>
<tr>
<td>2-</td>
<td>VOLTAGE 3</td>
</tr>
<tr>
<td>3-</td>
<td>VOLTAGE 2</td>
</tr>
<tr>
<td>4-</td>
<td>VOLTAGE 1</td>
</tr>
<tr>
<td>1+</td>
<td>CURRENT A 1</td>
</tr>
<tr>
<td>2+</td>
<td>CURRENT A N</td>
</tr>
<tr>
<td>3+</td>
<td>CURRENT A 3</td>
</tr>
<tr>
<td>4+</td>
<td>CURRENT A 2</td>
</tr>
</tbody>
</table>

Note: If using negative sequence phase rotation, swap the connectors VOLTAGE 2 and VOLTAGE 3 as well as CURRENT 2 and CURRENT 3.

Table 5-2: Manufacturer ordering information

<table>
<thead>
<tr>
<th>Description of the generator combination socket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Article Number</td>
</tr>
<tr>
<td>Manufacturer</td>
</tr>
</tbody>
</table>

You can order the plug for generator combination socket directly from OMICRON. For the part number refer to section 9.8, "Ordering Information" on page 127.
5.2 Connections on the Back Panel

The SELV interface LL out 7 - 12 is optional. Please refer to section 6.11, "Option LLO-2 (Low Level Outputs)" on page 90.

5.2.1 Ethernet Ports ETH1 and ETH2

The two PoE (Power over Ethernet) ports ETH1 and ETH2 are standard 10/100Base-TX (twisted pair) Ethernet ports. They support auto crossing (auto MDI/MDIX). This means you can use a standard cable or a cross-over Ethernet patch cable.

Note: If your Ethernet ports ETH1 and ETH2 look different, i.e., ETH2 is the connector version of Fast Ethernet over optical fiber, refer to chapter 6.5, "Technical Data of the Ethernet Ports" on page 63.

Since the CMC test set can be controlled over a network, any distance between the controlling computer and the test set is possible. This enables direct remote control of the CMC test set, e.g., for end-to-end testing.

The Ethernet ports also provide the basis for the processing of substation protocols according to the IEC 61850 standard. They allow flexible configurations, e.g., for separation of data traffic from different network segments or segregation of substation protocol data and test set control commands.
The green LED indicates a link connection to a PC or a network. The yellow LED indicates active traffic (receiving or transmitting) on the cable.

For detailed technical data about the Ethernet ports, please refer to section 6.5, “Technical Data of the Ethernet Ports” on page 63.

5.2.2 ! Button

The ! button enables you to recover from unsuccessful software image downloads or other emergency situations. To start a new software image download, press the ! button with a pointed tool or a paper clip while powering-up the CMC. In that case, the test set will not start as usual but wait for a new software image download.

5.2.3 Associate Button

The Associate button has the following functions:

- **Association with controlling computer**

 An Ethernet communication port enables you to communicate with any CMC available on the network. This may lead to dangerous situations where a user accidentally connects to a device located on a desk of somebody else, emitting unsafe voltages and endangering the person working there.

 To prevent such a situation, a special mechanism is integrated into the CMC test set that allows only “authorized” clients to control the test set. By using the Associate button, the test set is registered for use with a specific host computer.

 The test set will issue voltages and currents only when it is associated to the client requesting this. The association process can be initiated by the Test Set Association and Configuration tool or by the OMICRON Device Browser. For more details about this process, refer to the Help of the according tool.

 For the association the Ethernet hardware address (MAC) of the controlling computer is remembered. Consequently, if the network interface on the computer has changed, the CMC test set has to be associated whenever the MAC address changes.

- **Reset IP Configuration**

 If the Associate button is pressed while powering up the CMC test set, the IP configuration of the network interfaces is reset to factory default, which is DHCP/AutoIP for both network interfaces. It may be necessary to reset the IP configuration in this way to recover from settings with conflicting static IP addresses.
5.2.4 Status LED A, B

The status LED A and B are of interest in case of troubleshooting.

A: yellow status LED

- A lit yellow LED indicates that the test set is ready to be controlled by a computer. The hardware checks in the test set are finished, and the test set is properly connected to a computer or a network.

- The LED is off when the test set is waiting for an "emergency software image download". This is the case when pressing the I button while powering-up the CMC test set.

B: green LED

If the yellow LED A is off, the green LED B signals the following conditions:

- LED B blinks slowly:
 CMC test set waits for the TFTP download (Trivial File Transfer Protocol) of a software image.

- LED B is lit:
 The TFTP download of the software image is in progress.

- LED B blinks quickly:
 The computer writes (e.g., the software image) to the flash memory of the CMC test set. Do not turn off the CMC test set as long as the writing is in progress.

5.2.5 Ethernet / Network Settings

General

The OMICRON Test Universe software running on the computer communicates with the CMC test set via a network connection. Therefore it is possible to either have the CMC directly connected to the computer’s network plug by a cable or to have the CMC and the controlling computer connected to a computer network.

Both network ports can be used equally, and both network ports have link LEDs (green) and traffic LEDs (yellow flashing) to check the physical connectivity and proper cabling.

IP Configuration

For the CMC test set to communicate with the controlling computer and the OMICRON Test Universe software, TCP/IP is used. The IP parameters are set by either the Test Set Association and Configuration tool or the OMICRON Device Browser.
The CMC test set can either be set to static IP addresses or use DHCP (Dynamic Host Configuration Protocol) and AutoIP/APIPA (Automatic Private IP Addressing).

Additionally, there is a special DHCP server integrated in the CMC test set to serve IP addresses only for that computer the OMICRON Test Universe software is running on. Note that this will only take place when there is no DHCP server in the network. If there is DHCP server in the network, the DHCP feature of the CMC test set remains inactive.

If the IP settings conflict with IP settings of other devices in the network, it is possible to reset the test set to factory defaults (DHCP and AutoIP) by pressing the Associate button at the rear of the test set while powering up the test set.

Security / Firewall Settings

To automatically detect and set the IP configuration of CMC test sets in the network, IP-multicasting is used by the Test Universe software. Therefore, a firewall program has to be configured to allow for this communication. For the Microsoft Windows Firewall in Windows XP SP2 (or later) the configuration of the firewall is done automatically during installation of the OMICRON Test Universe.

The software component on the computer that automatically detects test sets on the network (OMFind.exe) requires an enabled inbound connection on port 4987 for UDP. For TCP communication, the software component on the computer that controls the test sets (CMEngAl.exe) requires an enabled outbound connection on port 2200.

More information about the Firewall configuration can be found in the FAQ section of the Get Support booklet (Technical Support for CMC Test Sets). This manual is available as PDF file on your hard disk after the installation of OMICRON Test Universe. Its name is _Support Booklet.pdf.

Network Troubleshooting

For instructions to help you to incorporate network-capable CMC test sets into a computer network, please refer to the manual Network-based CMC Test Sets. This manual is available as PDF file on your hard disk after the installation of OMICRON Test Universe. Its name is Network-based test sets.pdf.

To view the manuals, start the Test Universe Help from the Start Page or any test module and navigate to the table of contents entry User Manuals (at the beginning of the table of contents). Click Read Me First. In this topic you find direct links to both manuals. To open a manual, just click the link.
5.2.6 SELV Interfaces

All inputs and outputs to the SELV group (SELV = Safety Extra Low Voltage) reference to a common neutral that is internally connected to the protective earth (GND) of the housing.

5.2.6.1 External Interface ("ext. Interf.")

The SELV interface connector "ext. Interf." holds four additional transistor binary outputs (Bin. out 11 - 14). Unlike regular relay outputs, Bin. out 11 - 14 are bounce-free binary outputs (small signals) and have a minimal reaction time.

In addition, two high frequency counter inputs for up to 100 kHz are available for the testing of energy meters.

For more detailed information please refer to the technical data section 6.3.6, "Low-Level Binary Outputs ("ext. Interf.")" on page 54.

Meter Testing

For energy meter test applications, the "ext. Interf." permits easy connectivity. For more information about the connection of scanning heads please refer to sections 9.6.5, "Adapter Cable for Scanning Heads" on page 117 and 9.6.6, "CMLIB B" on page 118.

Synchronization

Via the "ext. Interf.", the CMC 356 time base can be GPS- and IRIG-B-synchronized. Depending on the synchronization method of your choice, use either the CMGPS synchronization unit or the CMIRIG-B interface box.

Both synchronization accessories, the CMGPS and the CMIRIG-B, are optional and are described in more details in section 9.3, "Time Synchronization Accessories" on page 107.
5.2.6.2 LL out 1-6 (Low Level Outputs 1-6)

The SELV interface connector "LL out 1 - 6" holds two independent generator triples. These six high accuracy analog signal sources can serve to either control an external amplifier or to directly provide small signal outputs.

In addition, a serial digital interface is available that transmits control and monitor functions between the CMC 356 and the external amplifiers. Supported devices are CMA 156, CMA 56\(^1\), CMS 156, CMS 251\(^1\) and CMS 252.

The low level outputs are short-circuit-proof and continually monitored for overload.

Connect the external amplifier to the CMC 356 low level outputs. Use the connecting cable that was supplied with the amplifier.

For more detailed information please refer to the technical data section 6.3.5, "Low Level Outputs "LL out" for External Amplifiers" on page 52.

5.2.6.3 LL out 7-12 (Low Level Outputs 7-12) - Option "LLO-2"

The SELV interface connector "LL out 7 - 12" is an option available for the CMC 356 test set.

The outputs 7-12 extend the low level outputs 1-6 by two more independent generator triples. Outputs 7-12 are technically identical to outputs 1-6 as described above.

For more detailed information please refer to the technical data section 6.11, "Option LLO-2 (Low Level Outputs)" on page 90.

Overload Warning Flagged in the Software

When a low level output is overloaded, a corresponding warning message appears on the user interface of the OMICRON Test Universe software.

\(^1\) These products are not available anymore.
6 **TECHNICAL DATA**

Guaranteed Values:

- **General:**
 The values are valid for the period of one year after factory calibration, within 23 °C ± 5 °C at nominal value and after a warm-up time greater than 25 min.

- **Guaranteed values from the generator outputs:**
 The values are valid in the frequency range from 10 to 100 Hz unless specified otherwise. Given maximum phase errors are related to the voltage amplifier outputs.

- **Accuracy data for analog outputs are valid in the frequency range from 0 to 100 Hz unless specified otherwise.**

- **The given input/output accuracy values relate to the range limit value (% of range limit value).**

6.1 Main Power Supply

Table 6-1: Power supply data

<table>
<thead>
<tr>
<th>Main Power Supply</th>
<th>Connector according to IEC 60320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection</td>
<td></td>
</tr>
</tbody>
</table>
| Voltage, single phase nominal voltage operational range | 100 - 240 V_{AC}
| | 85 ... 264 V_{AC} |
| Power fuse | T 12.5 AH 250 V (5 x 20 mm)
| | "Schurter", order number 0001.2515 |
| Nominal current1 | at < 170 V: 12 A max.
| | at > 170 V: 10 A max. |
| Frequency nominal frequency operational range | 50/60 Hz
| | 45 ... 65 Hz |
| Overvoltage category | II |

1 Refer to section 6.3.4, "Operational Limits in Conjunction with Mains Supply" on page 51.
6.2 Insulation Coordination

Table 6-2: Insulation coordination

<table>
<thead>
<tr>
<th>Insulation Coordination</th>
<th>Overvoltage category</th>
<th>Pollution degree</th>
<th>Insulation of function groups on front panel to ground (GND)<sup>1</sup></th>
<th>Insulation of functional groups on front panel from each other</th>
<th>Measurement category (BINARY / ANALOG INPUTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>II</td>
<td>2 (except for Binary Inputs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Basic insulation with maximum voltage of 600 V<sub>rms</sub> to ground</td>
<td>Working insulation</td>
<td>CAT III / 300 V<sub>rms</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clearance: > 3 mm (0.12")</td>
<td>Clearance: > 1 mm (0.04")</td>
<td>CAT IV / 150 V<sub>rms</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Creepage: > 6 mm (0.24")</td>
<td>Creepage: > 1 mm (0.04")</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Test voltage: 2200 V<sub>rms</sub></td>
<td>Test voltage: 1500 VDC</td>
<td></td>
</tr>
</tbody>
</table>

1 Functional groups on CMC 356 front panel: VOLTAGE OUTPUT, CURRENT OUTPUT (A, B), AUX DC, BINARY OUTPUT, BINARY / ANALOG INPUT, ANALOG DC INPUT
6.3 Outputs

For block diagrams of the available generator outputs, please refer to section 4.1, "Block Diagram" on page 20.

Table 6-3: Analog current, voltage, and LL outputs.

<table>
<thead>
<tr>
<th>General Generator Outputs Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(analog current and voltage outputs, outputs "LL out")</td>
<td></td>
</tr>
<tr>
<td>Frequency ranges</td>
<td></td>
</tr>
<tr>
<td>1 sinusoidal signals</td>
<td>10 ... 1000 Hz</td>
</tr>
<tr>
<td>2 harmonics / interharmonics</td>
<td>10 ... 3000 Hz</td>
</tr>
<tr>
<td>3 transient signals</td>
<td>DC ... 3.1 kHz</td>
</tr>
<tr>
<td>Frequency resolution</td>
<td>< 5 µHz</td>
</tr>
<tr>
<td>Frequency accuracy</td>
<td>± 0.5 ppm</td>
</tr>
<tr>
<td>Frequency drift</td>
<td>± 1 ppm</td>
</tr>
<tr>
<td>Bandwidth (–3 dB)</td>
<td>3.1 kHz</td>
</tr>
<tr>
<td>Phase range φ</td>
<td>- 360° to + 360°</td>
</tr>
<tr>
<td>Phase resolution</td>
<td>0.001°</td>
</tr>
<tr>
<td>Synchronized operation</td>
<td>Generator outputs can be synchronized to a reference input signal on binary/analog input 10 (range: 40 ... 70 Hz).</td>
</tr>
<tr>
<td>Temperature drift</td>
<td>0.0025 %/°C</td>
</tr>
</tbody>
</table>

1 If you purchased the option FL-6, the maximum output frequency is constrained to 599 Hz.
2 Amplitude derating for current outputs at frequencies above 380 Hz.
3 Signals above 1 kHz are only supported in selected Test Universe modules and are only available on the voltage outputs and the low level outputs.

All voltages and current generators can independently be configured with respect to amplitude, phase angle, and frequency.

All outputs are monitored. Overload conditions result in a message displayed on the PC.
6.3.1 Extended Frequency Range

In selected Test Universe modules (e.g., Harmonics and PQ Signal Generator) the CMC 356 supports a mode for generating stationary signals up to 3 kHz on the voltage outputs and the low-level outputs. This mode corrects the phase and gain errors of the output filter. The 3 dB bandwidth of this filter limits the amplitude at 3 kHz to about 70 % of the maximum range value. The application of the extended frequency range is the generation of harmonics and interharmonics.

Table 6-4: Extended frequency range (1 - 3 kHz)

<table>
<thead>
<tr>
<th></th>
<th>Typical</th>
<th>Guaranteed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Level Outputs¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase error</td>
<td>< 0.25°</td>
<td>< 1°</td>
</tr>
<tr>
<td>Amplitude error</td>
<td>< 0.25 %</td>
<td>< 1 %</td>
</tr>
<tr>
<td>Voltage Amplifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase error</td>
<td>< 0.25°</td>
<td>< 1°</td>
</tr>
<tr>
<td>Amplitude error</td>
<td>< 0.25 %</td>
<td>< 1 %</td>
</tr>
</tbody>
</table>

¹ No extended frequency range support for external amplifiers.
6.3.2 Current Outputs

<table>
<thead>
<tr>
<th>Current Outputs<sup>1</sup> (Groups A and B)</th>
<th>Typical</th>
<th>Guaranteed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output currents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-phase AC (L-N)</td>
<td>6 x 0 ... 32 A (Group A and B)</td>
<td>6 x 430 VA at 25 A</td>
</tr>
<tr>
<td>3-phase AC (L-N)</td>
<td>3 x 0 ... 64 A (Group A + B parallel)</td>
<td>3 x 860 VA at 50 A</td>
</tr>
<tr>
<td>2-phase AC (L-L)<sup>2, 3</sup></td>
<td>2 x 0 ... 32 A (Group A and B)</td>
<td>2 x 870 VA at 25 A</td>
</tr>
<tr>
<td>1-phase AC (L-L)<sup>2, 3</sup></td>
<td>1 x 0 ... 64 A (Group A + B parallel)</td>
<td>1 x 1740 VA at 50 A</td>
</tr>
<tr>
<td>1-phase AC (L-L-L-L)<sup>2, 3</sup></td>
<td>1 x 0 ... 32 A (Group A + B in series)</td>
<td>1 x 1740 VA at 25 A</td>
</tr>
<tr>
<td>2-phase AC (LL-LN)<sup>2</sup></td>
<td>2 x 0 ... 64 A (Group A and B)</td>
<td>2 x 500 VA at 40 A</td>
</tr>
<tr>
<td>1-phase AC (LL-LN)<sup>2</sup></td>
<td>1 x 0 ... 128 A (Group A + B parallel)</td>
<td>1 x 1000 VA at 80 A</td>
</tr>
<tr>
<td>DC (LL-LN)<sup>2</sup></td>
<td>1 x 1400 W at ±80 A</td>
<td>1 x 1000 W at ±80 A</td>
</tr>
</tbody>
</table>

Footnotes:
1. Data for three-phase systems are valid for symmetric conditions (0 °, 120 °, 240 °) unless specified otherwise.
2. For wiring of single-phase modes see chapter 7, "Increasing the Output Power, Operating Modes" on page 91.
4. rd. = reading; rg. = range, whereat n% of rg. means n% of upper range value.
5. Valid for sinusoidal signals at 50/60 Hz and $R_{\text{load}} \leq 0.5 \, \Omega$.
6. Values at 20 kHz measurement bandwidth, nominal value, and nominal load.
7. Guaranteed data at 230 V mains for ohmic loads (PF=1); typical data for inductive loads. Refer to section 6.3.4, "Operational Limits in Conjunction with Mains Supply" on page 51.
8. For currents > 25 A, connect test object only to the 4 mm/0.16 " banana connections and not to the generator combination socket.
9. Current amplitude derating at frequencies above 380 Hz (see Figure 6-4).
Figure 6-1:
Guaranteed output power per phase of a group and when groups A and B are connected in parallel (active power values in W are guaranteed; apparent power values in VA are typical values)

Figure 6-2:
Guaranteed single phase output power curves (active power values in W are guaranteed; apparent power values in VA are typical values)

For additional information refer to section 7.2, "Single-Phase Operation of the CMC 356" on page 92.
Figure 6-3: Typical compliance voltage (50/60 Hz)

![Graph showing typical compliance voltage (50/60 Hz)](image)

The high and low sensitive curves in figure 6-3 correspond to the overload detection sensitivity settings in the Test Universe software. The low sensitive curves show the maximum available peak compliance voltage, which is mainly relevant for testing primary and electromechanical relays.

Figure 6-4: Current derating at high frequencies for sinusoidal signals

![Graph showing current derating at high frequencies](image)
The continuous operating range is given by the area below the curves in the figure 6-5 and 6-6 above.

If you don’t require more than 64 A, we recommend to use the 1 x 64 A configuration rather than the 128 A one because the 1 x 64 A configuration provides more continuous output power.

Due to the large number of operating modes, it is not possible to give universally applicable curves for the discontinuous mode. However, the examples given below can be used instead to gain feeling for the possible output durations (t1 is the possible duration of a cold device).
Technical Data

Table 6-6: Typical duty cycles for operation at ambient temperature of 23 °C

<table>
<thead>
<tr>
<th></th>
<th>6 x 32 A (L-N)</th>
<th>3 x 64 A (L-N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I [A]</td>
<td>P [W]</td>
</tr>
<tr>
<td>0 ... 25</td>
<td>0 ... 1200</td>
<td>100%</td>
</tr>
<tr>
<td>26</td>
<td>1400</td>
<td>80%</td>
</tr>
<tr>
<td>29</td>
<td>1300</td>
<td>75%</td>
</tr>
<tr>
<td>32</td>
<td>1200</td>
<td>71%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1 x 128 A (LL-LN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I [A]</td>
</tr>
<tr>
<td>0 80</td>
<td>0 ... 700</td>
</tr>
<tr>
<td>100</td>
<td>450</td>
</tr>
<tr>
<td>120</td>
<td>300</td>
</tr>
<tr>
<td>128</td>
<td>200</td>
</tr>
</tbody>
</table>
6.3.3 Voltage Outputs

Table 6-7: CMC 356 voltage outputs

Footnotes:

1. a) \(V_{L4} \) (t) automatically calculated:
 \[V_{L4} = (V_{L1} + V_{L2} + V_{L3}) \times C \]
 C: configurable constant from -4 to +4.

2. \(V_{L4} \) can be configured by software in frequency, phase, and amplitude.

3. Guaranteed data for ohmic loads, (PF=1). Refer to the accompanying figure of the output power curves. Refer to section 6.3.4, "Operational Limits in Conjunction with Mains Supply" on page 51.

4. Data for three-phase systems are valid for symmetric conditions (0 °, 120 °, 240 °).

5. Data for four-phase systems are valid for symmetric conditions (0 °, 90 °, 180 °, 270 °).

6. rd. = reading; rg. = range, whereat \(n \% \) of rg. means: \(n \% \) of upper range value.

7. Valid for sinusoidal signals at 50/60 Hz.

8. 20 kHz measurement bandwidth, nominal value, and nominal load.

9. If you purchased the option FL-6, the maximum output frequency is constrained to 599 Hz.

4 Voltage Outputs

<table>
<thead>
<tr>
<th>Output voltages</th>
<th>Typical</th>
<th>Guaranteed</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-phase AC (L-N)</td>
<td>(3 \times 0 \ldots 300 \text{ V})</td>
<td>(3 \times 85 \text{ VA at } 85 \ldots 300 \text{ V})</td>
</tr>
<tr>
<td>4-phase AC (L-N)</td>
<td>(4 \times 0 \ldots 300 \text{ V})</td>
<td>(4 \times 50 \text{ VA at } 85 \ldots 300 \text{ V})</td>
</tr>
<tr>
<td>1-phase AC (L-N)</td>
<td>(1 \times 0 \ldots 300 \text{ V})</td>
<td>(1 \times 150 \text{ VA at } 75 \ldots 300 \text{ V})</td>
</tr>
<tr>
<td>1-phase AC (L-L)</td>
<td>(1 \times 0 \ldots 600 \text{ V})</td>
<td>(1 \times 250 \text{ VA at } 200 \ldots 600 \text{ V})</td>
</tr>
<tr>
<td>DC (L-N)</td>
<td>(4 \times 0 \ldots \pm 300 \text{ V})</td>
<td>(1 \times 360 \text{ W at } 300 \text{ VDC})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output power (^2)</th>
<th>Typical</th>
<th>Guaranteed</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-phase AC (^3)</td>
<td>(3 \times 100 \text{ VA at } 100 \ldots 300 \text{ V})</td>
<td>(3 \times 85 \text{ VA at } 85 \ldots 300 \text{ V})</td>
</tr>
<tr>
<td>4-phase AC (^4)</td>
<td>(4 \times 75 \text{ VA at } 100 \ldots 300 \text{ V})</td>
<td>(4 \times 50 \text{ VA at } 85 \ldots 300 \text{ V})</td>
</tr>
<tr>
<td>1-phase AC (L-N)</td>
<td>(1 \times 200 \text{ VA at } 100 \ldots 300 \text{ V})</td>
<td>(1 \times 150 \text{ VA at } 75 \ldots 300 \text{ V})</td>
</tr>
<tr>
<td>1-phase AC (L-L)</td>
<td>(1 \times 275 \text{ VA at } 200 \ldots 600 \text{ V})</td>
<td>(1 \times 250 \text{ VA at } 200 \ldots 600 \text{ V})</td>
</tr>
<tr>
<td>DC (L-N)</td>
<td>(1 \times 420 \text{ W at } 300 \text{ VDC})</td>
<td>(1 \times 360 \text{ W at } 300 \text{ VDC})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>Error < 0.03 % of rd. (^5) + 0.01 % of rg.</th>
<th>Error < 0.08 % of rd. + 0.02 % of rg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonic distortion ((\text{THD+N})) (^6,7)</td>
<td>0.015 %</td>
<td>< 0.05 %</td>
</tr>
<tr>
<td>Phase error (^6)</td>
<td>Typical 0.02 °</td>
<td>Guaranteed < 0.1 °</td>
</tr>
<tr>
<td>DC offset voltage</td>
<td>< 20 mV</td>
<td>< 100 mV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage ranges</th>
<th>Range I: 0 ... 150 V</th>
<th>Range II: 0 ... 300 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>Range I: 5 mV</td>
<td>Range II: 10 mV</td>
</tr>
<tr>
<td>Frequency ranges (^8)</td>
<td>Sinusoidal signals harmonics/interharm. (^9)</td>
<td>10 ... 1000 Hz</td>
</tr>
<tr>
<td></td>
<td>Transient signals</td>
<td>10 ... 3000 Hz</td>
</tr>
<tr>
<td></td>
<td>DC ... 3.1 kHz</td>
<td></td>
</tr>
<tr>
<td>Short-circuit protect.</td>
<td>Unlimited for L - N</td>
<td></td>
</tr>
<tr>
<td>Connection</td>
<td>4 mm/0.16 " banana connectors; amplifier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>connection socket (V_{L1} - V_{L3})</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>Reinforced insulation of power supply and all SELV interfaces</td>
<td></td>
</tr>
</tbody>
</table>

\(^9\) Signals above 1 kHz are only supported in selected software modules and are only available on the voltage outputs and the low level outputs.
6.3.3.1 Power Diagram for Three-Phase Operation

Figure 6-7: Power diagram for three-phase operation
6.3.3.2 Power Diagram for Single-Phase Operation

Also refer to section 7.2.4, "Single-Phase Voltage" on page 95.

Figure 6-8: Single-phase operation L-N

Figure 6-9: Single-phase operation L-L
6.3.4 Operational Limits in Conjunction with Mains Supply

 Principally, the maximum output power of the CMC 356 is limited by the mains input supply voltage.

 For mains voltages of 115 VAC or smaller, it is also possible to supply the CMC 356 with two phases (L-L) instead of the normal phase-neutral (L-N) operation in order to increase the supply voltage (115 V * sqrt(3) = 200 V).

 In order to limit the internal losses and to maximize the output power of the voltage amplifier, always set the maximum test object voltage to the minimum value possible for the test.

 Beside the reduction of the available total output power of low line voltages, no other significant degradations in the technical data of the CMC 356 occur.

Table 6-8: Typical total output power at different mains voltages.

<table>
<thead>
<tr>
<th>Mains voltage</th>
<th>Current</th>
<th>Typical total output power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Currents only</td>
</tr>
<tr>
<td>230V</td>
<td>6 x 15 A</td>
<td>1600 W</td>
</tr>
<tr>
<td></td>
<td>6 x 25 A</td>
<td>1470 W</td>
</tr>
<tr>
<td></td>
<td>6 x 32 A</td>
<td>1320 W</td>
</tr>
<tr>
<td>115V¹</td>
<td>6 x 15 A</td>
<td>1120 W</td>
</tr>
<tr>
<td></td>
<td>6 x 25 A</td>
<td>990 W</td>
</tr>
<tr>
<td></td>
<td>6 x 32 A</td>
<td>860 W</td>
</tr>
<tr>
<td>100V¹</td>
<td>6 x 15 A</td>
<td>910 W</td>
</tr>
<tr>
<td></td>
<td>6 x 25 A</td>
<td>790 W</td>
</tr>
<tr>
<td></td>
<td>6 x 32 A</td>
<td>670 W</td>
</tr>
</tbody>
</table>

¹ After 15 min of continuous operation at full output power a duty cycle of 15 min on/15 min off is required at an ambient temperature of 25°C. This does not apply to the 6 x 32 A example because the output duration is limited by the current amplifier (see Chapter 6.3.2, "Current Outputs" on page 43 for more details).
6.3.5 Low Level Outputs "LL out" for External Amplifiers

Note: The low-level outputs "LL out 7 - 12" are only available, if the option LLO-2 is installed, refer to section 6.11, "Option LLO-2 (Low Level Outputs)" on page 90.

Both SELV interface connectors "LL out 1 - 6" as well as the optional "LL out 7 - 12" (if applicable) hold two independent generator triples each. These six high accuracy analog signal sources per connector can serve to either control an external amplifier or to directly provide small signal outputs.

In addition, each SELV interface connector provides a serial digital interface (pins 8-16; see below) that transmits control and monitor functions between the CMC 356 and the external amplifiers. Supported devices are the CMA 156, CMA 56, CMS 156, CMS 251 and CMS 252 (see also 9.6.7, "CMLIB A" on page 119 and 9.6.9, "Connection Cable for REF 54x Relays (ABB) with Low Level Signal Inputs" on page 121).

The low level outputs are short-circuit-proof and continually monitored for overload. They are separated through reinforced insulation from the power input and from the load outputs (SELV interface). They deliver calibrated signals in the range from 0 to 7 V$_{\text{eff}}$ nominal (0 to ± 10 V$_{\text{peak}}$).

Both the selection of the particular amplifier as well as the specification of the range of the amplifier takes place in the Test Universe software.

Figure 6-10: Pin assignment of "LL out 1-6" (lower 16-pole Lemo socket); view onto the connector from the cable wiring side.

The pin assignment of "LL out 7-12" socket is identical.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function LL out 1-6</th>
<th>Function LL out 7-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>LL out 1</td>
<td>LL out 7</td>
</tr>
<tr>
<td>Pin 2</td>
<td>LL out 2</td>
<td>LL out 8</td>
</tr>
<tr>
<td>Pin 3</td>
<td>LL out 3</td>
<td>LL out 9</td>
</tr>
<tr>
<td>Pin 4</td>
<td>Neutral (N) connected to GND</td>
<td></td>
</tr>
<tr>
<td>Pin 5</td>
<td>LL out 4</td>
<td>LL out 10</td>
</tr>
<tr>
<td>Pin 6</td>
<td>LL out 5</td>
<td>LL out 11</td>
</tr>
<tr>
<td>Pin 7</td>
<td>LL out 6</td>
<td>LL out 12</td>
</tr>
<tr>
<td>Pin 8-16</td>
<td>For internal purposes</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>Screen connection</td>
<td></td>
</tr>
</tbody>
</table>
"LL out 1-3" and "LL out 4-6" (and optionally "LL out 7-9" and "LL out 10-12") each make up a selectable voltage or current triple.

<table>
<thead>
<tr>
<th>6 Outputs "LL out 1 - 6" and 6 (optional) outputs "LL out 7 - 12"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage range</td>
</tr>
<tr>
<td>Frequency range²</td>
</tr>
<tr>
<td>Output current</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
<tr>
<td>Accuracy</td>
</tr>
<tr>
<td>Harmonic distortion (THD+N)³</td>
</tr>
<tr>
<td>Phase error⁴</td>
</tr>
<tr>
<td>DC offset voltage</td>
</tr>
<tr>
<td>Unconventional CT/VT simulation</td>
</tr>
<tr>
<td>Overload indication</td>
</tr>
<tr>
<td>Short-circuit protection</td>
</tr>
<tr>
<td>Insulation</td>
</tr>
</tbody>
</table>

¹ Input OMICRON amplifier nominal: 0 ... 5 V_{rms}

² If you purchased the option FL-6, the maximum output frequency is constrained to 599 Hz.

³ Values at nominal voltage (10 V_{peak}), 50/60 Hz, and 20 kHz measurement bandwidth.

⁴ Valid for sinusoidal signals at 50/60 Hz.

⁵ When simulating Rogowski sensors, the output voltage is proportional to the derivative of the current with respect to time (di(t)/dt).

Table 6-10: Ordering Information

| Connector for two guide notches and pull relief (for "LL out") | FGB.2B.316.CLAD 72Z |
| Black anti-bend cable cover | GMA.2B.070 DN |

For a manufacturer description about the connection sockets "LL out" and "ext. Interf.", visit the Web site www.lemo.com.
6.3.6 **Low-Level Binary Outputs ("ext. Interf.")**

The SELV interface connector "ext. Interf." holds four additional transistor binary outputs (Bin. out 11 - 14). Unlike regular relay outputs, Bin. out 11 - 14 are bounce-free binary outputs (small signals) and have a minimal reaction time.

In addition, two high frequency counter inputs for up to 100 kHz are available for the testing of energy meters. They are described in section 6.4.2, "Counter Inputs 100 kHz (Low Level)" on page 61.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>Counter input 1</td>
</tr>
<tr>
<td>Pin 2</td>
<td>Counter input 2</td>
</tr>
<tr>
<td>Pin 3</td>
<td>Reserved</td>
</tr>
<tr>
<td>Pin 4</td>
<td>Neutral (N) connected to GND</td>
</tr>
<tr>
<td>Pin 5</td>
<td>Binary output 11</td>
</tr>
<tr>
<td>Pin 6</td>
<td>Binary output 12</td>
</tr>
<tr>
<td>Pin 7</td>
<td>Binary output 13</td>
</tr>
<tr>
<td>Pin 8</td>
<td>Binary output 14</td>
</tr>
<tr>
<td>Pin 9</td>
<td>Reserved</td>
</tr>
<tr>
<td>Housing</td>
<td>Screen connection</td>
</tr>
</tbody>
</table>

Table 6-11: Data of the low-level binary outputs 11 - 14

<table>
<thead>
<tr>
<th>Type</th>
<th>Open-collector transistor outputs; external pull-up resistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching voltage</td>
<td>Max. 15 V</td>
</tr>
<tr>
<td>Max. input voltage</td>
<td>±16 V</td>
</tr>
<tr>
<td>Switch current</td>
<td>Max. 5 mA (current limited); min. 100 µA</td>
</tr>
<tr>
<td>Actualization time</td>
<td>100 µs</td>
</tr>
<tr>
<td>Rise time</td>
<td>< 3 µs (\left(V_{\text{extern}} = 5 \text{ V}, R_{\text{pullup}} = 4.7 \text{ kΩ} \right))</td>
</tr>
<tr>
<td>Connection</td>
<td>Connector "ext. Interf." (CMC 356 rear side)</td>
</tr>
<tr>
<td>Insulation</td>
<td>Reinforced insulation to all other potential groups of the test equipment. GND is connected to protective earth (PE).</td>
</tr>
</tbody>
</table>
Figure 6-12:
Circuit diagram of "ext. Interf." binary transistor outputs 11 - 14

Table 6-12:
Ordering Information

<table>
<thead>
<tr>
<th>Ordering Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector for one guide notch and pull relief (for "ext. Interf")</td>
<td>FGG.2B.316.CLAD 72Z</td>
</tr>
<tr>
<td>Black anti-bend cable cover</td>
<td>GMA.2B.070 DN</td>
</tr>
</tbody>
</table>

For a manufacturer description about the connection sockets "LL out" and "ext. Interf.", visit the Web site www.lemo.com.
6.3.7 Binary Output Relays

Table 6-13: Data of binary output relays

<table>
<thead>
<tr>
<th>4 Binary Output Relays (Binary Outputs 1-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>AC loading</td>
</tr>
<tr>
<td>DC loading</td>
</tr>
<tr>
<td>Switch-on current</td>
</tr>
<tr>
<td>Electrical lifetime</td>
</tr>
<tr>
<td>Pickup time</td>
</tr>
<tr>
<td>Fall back time</td>
</tr>
<tr>
<td>Bounce time</td>
</tr>
<tr>
<td>Connection</td>
</tr>
<tr>
<td>Insulation</td>
</tr>
</tbody>
</table>

The accompanying diagram shows the load limit curve for DC voltages. For AC voltages, a maximum power of 2000 VA is achieved.
DC Supply (AUX DC)

<table>
<thead>
<tr>
<th>DC Supply (AUX DC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage ranges</td>
<td>0 ... 66 V<sub>DC</sub> (max. 0.8 A)</td>
</tr>
<tr>
<td></td>
<td>0 ... 132 V<sub>DC</sub> (max 0.4 A)</td>
</tr>
<tr>
<td></td>
<td>0 ... 264 V<sub>DC</sub> (max. 0.2 A)</td>
</tr>
<tr>
<td>Power</td>
<td>Max. 50 W</td>
</tr>
<tr>
<td>Accuracy<sup>1</sup></td>
<td>Error: typical < 2 %, guaranteed < 5 %</td>
</tr>
<tr>
<td>Resolution</td>
<td>< 70 mV</td>
</tr>
<tr>
<td>Connection</td>
<td>4 mm/0.16 " banana sockets on front panel</td>
</tr>
<tr>
<td>Short-circuit protection</td>
<td>Yes</td>
</tr>
<tr>
<td>Overload indication</td>
<td>Yes</td>
</tr>
<tr>
<td>Insulation</td>
<td>Reinforced insulation from power supply and all SELV interfaces</td>
</tr>
</tbody>
</table>

¹ Percentage is with respect to each range's full-scale.
6.4 Inputs

6.4.1 Binary Inputs

Note: If option ELT-1 is installed, only the general binary input data given in the following Table 6-15 are valid. For detailed information about the option ELT-1, please refer to section 6.10, "Option ELT-1" on page 67.

Table 6-15: General data of binary inputs

<table>
<thead>
<tr>
<th>General Data of Binary Inputs 1…10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of binary inputs</td>
</tr>
<tr>
<td>Trigger criteria</td>
</tr>
<tr>
<td>Reaction time</td>
</tr>
<tr>
<td>Sampling frequency</td>
</tr>
<tr>
<td>Time resolution</td>
</tr>
<tr>
<td>Max. measuring time</td>
</tr>
<tr>
<td>Debounce time</td>
</tr>
<tr>
<td>Deglitch time</td>
</tr>
<tr>
<td>Counting function</td>
</tr>
<tr>
<td>pulse width</td>
</tr>
<tr>
<td>Configuration</td>
</tr>
<tr>
<td>Connection</td>
</tr>
<tr>
<td>Insulation</td>
</tr>
</tbody>
</table>
Data for Potential-Sensing Operation

<table>
<thead>
<tr>
<th></th>
<th>Setting range</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Resolution</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>20V</td>
<td>50mV</td>
</tr>
<tr>
<td>II</td>
<td>300V</td>
<td>500mV</td>
</tr>
<tr>
<td>Max. input voltage</td>
<td>CAT III/ 300 V<sub>rms</sub></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAT IV / 150 V<sub>rms</sub></td>
<td></td>
</tr>
<tr>
<td>Threshold voltage accuracy<sup>1</sup></td>
<td>5% of rd. + 0.5% of rg.</td>
<td></td>
</tr>
<tr>
<td>Threshold voltage hysteresis</td>
<td>Range I: typ. 60 mV</td>
<td>Range II: typ. 900 mV</td>
</tr>
<tr>
<td>Input impedance<sup>2</sup></td>
<td>Threshold 0...20V</td>
<td>210 kΩ</td>
</tr>
<tr>
<td></td>
<td>Threshold 20...300V</td>
<td>135 kΩ</td>
</tr>
</tbody>
</table>

¹ Applies to positive voltage signal edge; value shown in % of reading (rd.) + % of upper range value (rg.)

² Refer to figure 5-2, "Simplified circuit diagrams of binary inputs and outputs (CMC 356 standard, without option ELT-1 installed)" on page 28.

Data for Potential-Free Operation¹

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger criteria</td>
<td>Logical 0: R > 100 kΩ</td>
</tr>
<tr>
<td></td>
<td>Logical 1: R < 10 kΩ</td>
</tr>
<tr>
<td>Input impedance</td>
<td>216 kΩ</td>
</tr>
</tbody>
</table>

¹ Refer to figure 5-2, "Simplified circuit diagrams of binary inputs and outputs (CMC 356 standard, without option ELT-1 installed)" on page 28.
Deglitching input signals

In order to suppress short spurious pulses a deglitching algorithm could be configured. The deglitch process results in an additional dead time and introduces a signal delay. In order to be detected as a valid signal level, the level of an input signal must have a constant value at least during the deglitch time. The figure below illustrates the deglitch function.

Debouncing input signals

For input signals with a bouncing characteristic, a debounce function can be configured. This means that the first change of the input signal causes the debounced input signal to be changed and then be kept on this signal value for the duration of the debounce time.

The debounce function is placed after the deglitch function described above and both are realized by the firmware of the CMC 356 and are calculated in real time.

The figure below illustrates the deglitch function. On the right-hand side of the figure, the debounce time is too short. As a result, the debounced signal rises to “high” once again, even while the input signal is still bouncing and does not drop to low level until the expiry of another period T_{debounce}.
6.4.2 Counter Inputs 100 kHz (Low Level)

The SELV interface connector "ext. Interf." holds two high frequency counter inputs for up to 100 kHz are available for the testing of energy meters.

In addition, four transistor binary outputs (Bin. out 11 - 14) are available. They are described in section 6.3.6, "Low-Level Binary Outputs ("ext. Interf.")" on page 54.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>Counter input 1</td>
</tr>
<tr>
<td>Pin 2</td>
<td>Counter input 2</td>
</tr>
<tr>
<td>Pin 3</td>
<td>Reserved</td>
</tr>
<tr>
<td>Pin 4</td>
<td>Neutral (N) connected to GND</td>
</tr>
<tr>
<td>Pin 5</td>
<td>Binary output 11</td>
</tr>
<tr>
<td>Pin 6</td>
<td>Binary output 12</td>
</tr>
<tr>
<td>Pin 7</td>
<td>Binary output 13</td>
</tr>
<tr>
<td>Pin 8</td>
<td>Binary output 14</td>
</tr>
<tr>
<td>Pin 9</td>
<td>Reserved</td>
</tr>
<tr>
<td>Housing</td>
<td>Screen connection</td>
</tr>
</tbody>
</table>

Figure 6-16: Pin assignment of "ext. Interf." (upper 16-pole Lemo socket); view onto the connector from the cable wiring side.

Table 6-18: Counter inputs 100 kHz

<table>
<thead>
<tr>
<th>Max. counter frequency</th>
<th>100 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse width</td>
<td>> 3 μs (high and low signal)</td>
</tr>
<tr>
<td>Switch threshold</td>
<td></td>
</tr>
<tr>
<td>pos. edge</td>
<td>max. 8 V</td>
</tr>
<tr>
<td>neg. edge</td>
<td>min. 4 V</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>typ. 2 V</td>
</tr>
<tr>
<td>Rise & fall times</td>
<td>< 1 ms</td>
</tr>
<tr>
<td>Max. input voltage</td>
<td>± 30 V</td>
</tr>
<tr>
<td>Connection</td>
<td>Socket "ext. Interf." (rear CMC 356)</td>
</tr>
<tr>
<td>Insulation</td>
<td>Reinforced insulation to all other potential groups of the test equipment. GND is connected to protective earth (PE).</td>
</tr>
</tbody>
</table>
Figure 6-17: Circuit diagram of "ext. Interf." counter inputs 1 and 2

Rear side of CMC 356

Inside of CMC 356

+15 V

Counter inputs 1 & 2 "ext. Interf."

Table 6-19: Ordering Information

<table>
<thead>
<tr>
<th>Ordering Information</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector for one guide notch and pull relief (for "ext. Interf")</td>
<td>FGG.2B.316.CLAD 72Z</td>
</tr>
<tr>
<td>Black anti-bend cable cover</td>
<td>GMA.2B.070 DN</td>
</tr>
</tbody>
</table>

For a manufacturer description about the connection sockets "LL out 1-6" and "ext. Interf.", visit the Web site www.lemo.com.
6.5 Technical Data of the Ethernet Ports

Originally, CMC 356 test sets were delivered with a so-called NET-1 board that holds two different Ethernet ports:

- ETH1: a 10/100Base-TX Ethernet port
- ETH2: a 100Base-FX (optical fiber) Ethernet port.

With the introduction of the front panel control device CMControl, the CMC 356 test sets are now equipped with a NET-1B board that holds two identical PoE (Power over Ethernet) ports ETH1 and ETH2.

CMC 356 test sets with NET-1 board can be upgraded with the new NET-1B board to be able to communicate with the new CMControl and have Ethernet access at the same time.

6.5.1 The NET-1B Board

<table>
<thead>
<tr>
<th>Ethernet ports ETH1 and ETH2</th>
<th>Type</th>
<th>10/100Base-TX (10/100Mbit, twisted pair, auto-MDI/MDIX or auto-crossover)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>RJ45</td>
<td></td>
</tr>
<tr>
<td>Cable type</td>
<td>LAN cable of category 5 (CAT5) or better</td>
<td></td>
</tr>
<tr>
<td>Status indication</td>
<td>Green LED: physical link present Yellow LED: traffic on interface</td>
<td></td>
</tr>
<tr>
<td>Power over Ethernet (PoE)</td>
<td>IEEE 802.3af compliant. Port capability limited to one Class 1 (3.84 W) and one Class 2 (6.49 W) power device.</td>
<td></td>
</tr>
</tbody>
</table>
6.5.2 The NET-1 Board

Table 6-20:
Technical data of the NET-1 Ethernet port ETH1

<table>
<thead>
<tr>
<th>Type</th>
<th>10/100Base-TX (10/100Mbit, twisted pair, auto-MDI/MDIX or auto-crossover)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>RJ45</td>
</tr>
<tr>
<td>Cable type</td>
<td>LAN cable of category 5 (CAT5) or better</td>
</tr>
<tr>
<td>Status indication</td>
<td>Green LED: physical link present Yellow LED: traffic on interface</td>
</tr>
</tbody>
</table>

Ethernet port ETH1

![Image of Ethernet port ETH1]

Table 6-21:
Technical data of the NET-1 Ethernet port ETH2

<table>
<thead>
<tr>
<th>Type</th>
<th>100Base-FX (100Mbit, fiber, duplex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>MT-RJ</td>
</tr>
<tr>
<td>Cable type</td>
<td>50/125 µm or 62.5/125 µm (duplex patch cable)</td>
</tr>
<tr>
<td>Cable length</td>
<td>> 1 km (0.62 miles) possible</td>
</tr>
<tr>
<td>Status indication</td>
<td>Green LED: physical link present Yellow LED: traffic on interface</td>
</tr>
</tbody>
</table>

| Warning | This is a product of Laser Class 1 (IEC 60825) |

![Image of Ethernet port ETH2]

This is a product of Laser Class 1 (IEC 60825)
6.6 Environmental Conditions

6.6.1 Climate

<table>
<thead>
<tr>
<th>Climate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>0 ... +50 °C; above +30 °C a 50 % duty cycle may apply.</td>
</tr>
<tr>
<td>Storage and transportation</td>
<td>-25 ... +70 °C</td>
</tr>
<tr>
<td>Max. altitude</td>
<td>2000 m</td>
</tr>
<tr>
<td>Humidity</td>
<td>5 ... 95% relative humidity; no condensation</td>
</tr>
<tr>
<td>Climate Tested</td>
<td>Tested according to IEC 68-2-78</td>
</tr>
</tbody>
</table>

6.6.2 Shock and Vibration

<table>
<thead>
<tr>
<th>Dynamics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration</td>
<td>Tested according to IEC 60068-2-6 (operating mode); frequency range 10 ... 150 Hz; acceleration 2 g continuous (20 m/s²); 10 cycles per axis</td>
</tr>
<tr>
<td>Shock</td>
<td>Tested according to IEC 60068-2-27 (operating mode); 15 g / 11 ms, half-sinusoid, each axis</td>
</tr>
</tbody>
</table>

6.7 Mechanical Data

<table>
<thead>
<tr>
<th>Size, Weight and Protection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>16.8 kg (37 lbs)</td>
</tr>
<tr>
<td>Dimensions W x H x D (without handle)</td>
<td>450 x 145 x 390 mm (17.7 x 5.7 x 15.4 ”)</td>
</tr>
<tr>
<td>Housing</td>
<td>IP20 according to EN 60529</td>
</tr>
</tbody>
</table>

6.8 Cleaning

To clean the CMC 356, use a cloth dampened with isopropanol alcohol or water. Prior to cleaning, always switch off the power switch and unplug the power cord from the mains.
6.9 Safety Standards, Electromagnetic Compatibility (EMC) and Certificates

CE Conformity, Requirements

The product adheres to the specifications of the guidelines of the council of the European Community for meeting the requirements of the member states regarding the electromagnetic compatibility (EMC) Directive 89/336/EEC and the low voltage Directive 73/23/EEC.

<table>
<thead>
<tr>
<th>EMC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission</td>
<td>Immunity</td>
</tr>
<tr>
<td>Europe</td>
<td>Europe</td>
</tr>
<tr>
<td>EN 61326; EN 61000-6-4; EN 61000-3-2/3</td>
<td>EN 61326; EN 61000-6-2; EN 61000-4-2/3/4/5/6/11</td>
</tr>
<tr>
<td>IEC 61326; IEC 61000-6-4; IEC 61000-3-2/3</td>
<td>IEC 61326; IEC 61000-6-2; IEC 61000-4-2/3/4/5/6/11</td>
</tr>
<tr>
<td>FCC Subpart B of Part 15 Class A</td>
<td></td>
</tr>
</tbody>
</table>

Certified Safety Standards

<table>
<thead>
<tr>
<th>Certified Safety Standards</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>EN 61010-1</td>
</tr>
<tr>
<td></td>
<td>Insulation of PC and SELV interfaces complies with EN 60950-1</td>
</tr>
<tr>
<td>International USA Canada</td>
<td>IEC 61010-1</td>
</tr>
<tr>
<td></td>
<td>UL 61010-1</td>
</tr>
<tr>
<td></td>
<td>CAN/CSA-C22.2 No 61010-1-04</td>
</tr>
</tbody>
</table>

Certificate

Manufactured under an ISO9001 registered system
6.10 Option ELT-1

The ELT-1 option enables the CMC 356 to measure analog signals:

- Analog DC inputs (+/-10V and either +/-1mA or +/-20mA) for basic transducer testing with the test module QuickCMC.
- Basic voltage and current measurements with up to three of the 10 analog measurement inputs (restricted EnerLyzer mode).

In addition, the Test Universe module EnerLyzer provides the following functionality:

- Simultaneous measurement of up to 10 voltages and/or currents.
- Evaluation of DC components (DC voltages or DC currents).
- Real-time indication of effective values (true RMS) for all measurement signals.
- Peak values indication (U_{peak}, I_{peak},...).
- Phase angles with reference to a given input signal.
- Real-time calculation of apparent, reactive, and active power (in any configuration).
- Frequency and spectrum indication (harmonic diagrams) of periodic signals.
- Capturing of transient input signals with different sampling rates.
- Different triggering options for transient signal capturing (basic triggers and power quality triggers).
- Trend Recording: Measurement of RMS current, RMS voltage, frequency, phase, active, apparent and reactive power and power factor over long periods of time (up to 4 million samples possible).
Using the CMC 356 test set in combination with the Test Universe module Transducer enables advanced testing of multifunctional single-phase and three-phase electrical transducers with symmetrical or non-symmetrical operating characteristics.

The hardware option ELT-1 can either be ordered with the new test set or later as a factory upgrade (the CMC 356 needs to be returned to OMICRON).

6.10.1 General Data

The actual capturing of the measurement values and the range switching for the channels takes place in the analog input stages AFE (Analog Front End). Each AFE is used by two input channels and galvanically separated from the other input stages.

The measured values are passed through an isolation amplifier to the "Measurement Unit" and digitized by an A/D converter. The further processing is done by a high-performance floating point digital signal processor (DSP).

As such, apparent power, reactive power, active power, etc., can be provided in real-time and transmitted to the PC.

The analog measurement inputs have five measurement ranges that can be configured individually in the test module EnerLyzer.

- 100 mV
- 1 V
- 10 V
- 100 V
- 600 V

These range limits refer to the respective rms values of sinusoidal input signals. The ranges 100 mV, 1 V, 10 V and 100 V can be overloaded approximately with 10 %.

Input impedance: 500 kOhm || 50 pF for all measurement ranges.

Overload protection: 600 Vrms (± 850 Vpeak) from reference potential N, from another input, or protective earth (GND).

The sampling rate can be configured by software:

- 28.44 kHz
- 9.48 kHz
- 3.16 kHz
Four different operating modes are possible:

- Multimeter Mode (section 6.10.6)
- Harmonic Analysis (section 6.10.7)
- Transient Recording (section 6.10.8)
- Trend Recording (section 6.10.9)

6.10.2 Analog DC Input (V_{DC}, I_{DC})

The measurement of analog DC signals has been implemented to enable the testing of transducers. The measurement unit consists of:

- a highly accurate voltage reference,
- one ADC (Analog Digital Converter) for each input, and
- the respective input circuits (i.e., accurate voltage divider, shunt, filter).

The DC measurement unit measures the input signals V_{DC} and I_{DC} and performs the evaluation and forwarding of the measurement values.

Input I_{DC} has two measurement ranges: $0 \ldots \pm 20$ mA and $0 \ldots \pm 1$ mA. The input is protected by a reversible input fuse. The inputs V_{DC} and I_{DC} reference a common neutral N. The DC measurement unit is galvanically isolated from all other connections on the front panel.
6.10.3 Accuracy of the Analog DC Input

Note: Exceeding the specified input values can damage the measurement inputs!

DC Measurement Input IDC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement ranges</td>
<td>0 ... ±1 mA</td>
</tr>
<tr>
<td></td>
<td>0 ... ±20 mA</td>
</tr>
<tr>
<td>Max. input current</td>
<td>600 mA</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Typical error < 0.003 % of rg.(^1)</td>
</tr>
<tr>
<td></td>
<td>Guaranteed error < 0.02 % of rg.</td>
</tr>
<tr>
<td>Input impedance</td>
<td>Approx. 15 Ω</td>
</tr>
<tr>
<td>Connection</td>
<td>4 mm/0.16 " banana connectors</td>
</tr>
<tr>
<td>Insulation</td>
<td>Insulation to all other front panel connections.</td>
</tr>
<tr>
<td></td>
<td>Reinforced insulation from all SELV interfaces and</td>
</tr>
<tr>
<td></td>
<td>from power supply.</td>
</tr>
<tr>
<td></td>
<td>Not galvanically isolated from (V_{DC}).</td>
</tr>
</tbody>
</table>

\(^1\) rg. = range, whereat \(n\) % of rg. means: \(n\) % of upper range value.

DC Voltage Measurement Input VDC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
<td>0...± 10 V</td>
</tr>
<tr>
<td>Max. input voltage</td>
<td>± 11 V</td>
</tr>
<tr>
<td>Input impedance</td>
<td>1 MΩ</td>
</tr>
<tr>
<td>Max. input current</td>
<td>± 90 mA</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Typical error < 0.003 % of rg.(^1)</td>
</tr>
<tr>
<td></td>
<td>Guaranteed error < 0.02 % of rg.</td>
</tr>
<tr>
<td>Connection</td>
<td>4 mm/0.16 " banana connectors</td>
</tr>
<tr>
<td>Insulation</td>
<td>Not galvanically isolated from (I_{DC})</td>
</tr>
</tbody>
</table>
6.10.4 Measuring Currents

Since the analog inputs of the CMC 356 are voltage inputs, current measurement has to be performed using suitable active current clamps with voltage outputs or shunt resistors.

OMICRON offers the C-PROBE1 as a suitable current clamp (refer to section 9.5, "Current Clamp C-PROBE1" on page 112). The C-PROBE1 is not included in the scope of delivery of option ELT-1 and thus has to be ordered separately.

For further information, please contact OMICRON electronics (refer to section "Contact Information / Technical Support" on page 137).
6.10.5 Accuracy of Binary/Analog Inputs with Option ELT-1

The technical data for the binary inputs change with the installation of option ELT-1.

Figure 6-20: Simplified diagrams of analog and binary inputs with option ELT-1 installed.

ANALOG DC INPUT

Only available with option ELT-1.

BINARY/ANALOG INPUT

Circuit diagram of a binary input for potential-free operation.
Data for Potential-Sensing Operation

<table>
<thead>
<tr>
<th>Threshold voltage data per input range</th>
<th>Setting range</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mV</td>
<td>± 140 mV</td>
<td>2 mV</td>
</tr>
<tr>
<td>1 V</td>
<td>± 1.4 V</td>
<td>20 mV</td>
</tr>
<tr>
<td>10 V</td>
<td>± 14 V</td>
<td>200 mV</td>
</tr>
<tr>
<td>100 V</td>
<td>± 140 V</td>
<td>2 V</td>
</tr>
<tr>
<td>600 V</td>
<td>± 600 V</td>
<td>20 V</td>
</tr>
</tbody>
</table>

Max. input voltage
- CAT II / 600 V_{rms} (850 V_{pk})
- CAT III / 300 V_{rms}
- CAT IV / 150 V_{rms}

Threshold voltage accuracy¹ per range:
- 100 mV, 1 V, 10 V, 100 V, 600 V
- Error:
 - typical < 2 %, guaranteed < 4 %
 - typical < 5 %, guaranteed < 10 %

Threshold voltage hysteresis 1…5 % of the specified input in reference to each range’s full-scale

Input impedance 500 kΩ (|| 50 pF)

¹ Valid for positive voltage signal edge; percentage is shown in respect to each range’s full-scale.

Data for Potential-Free Operation¹

<table>
<thead>
<tr>
<th>Trigger criteria</th>
<th>Logical 0: R > 80 kΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical 1: R < 40 kΩ</td>
<td></td>
</tr>
</tbody>
</table>

Input impedance 162 kΩ (|| 50 pF)

¹ Refer to figure 5-2, "Simplified circuit diagrams of binary inputs and outputs (CMC 356 standard, without option ELT-1 installed)" on page 28.

6.10.6 Multimeter Mode

This operating mode is designed for measuring steady-state signals (e.g., also non-sinusoidal shaped signals). Measurements such as rms values, phase angle, frequency, etc. can be performed.

The input signals are processed in real time without delay.
6.10.6.1 Accuracy of AC Measurements

Conditions: integration time 1 s, measurement signal sinusoidal, excitation 10 - 100 %, accuracy references the measurement full scale values.

<table>
<thead>
<tr>
<th>Table 6-30:</th>
<th>Sampling rate 28.44 kHz; measurement range 600 V, 100 V, 10 V, 1 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>Accuracy</td>
</tr>
<tr>
<td>DC</td>
<td>Typical ± 0.15% Guaranteed ± 0.40%</td>
</tr>
<tr>
<td>10 Hz ... 100 Hz</td>
<td>± 0.06% Guaranteed ± 0.15%</td>
</tr>
<tr>
<td>10 Hz ... 1 kHz</td>
<td>± 0.06% / -0.11% Guaranteed ± 0.25%</td>
</tr>
<tr>
<td>10 Hz ... 10 kHz</td>
<td>± 0.06% / -0.7% Guaranteed ± 1.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6-31:</th>
<th>Sampling rate 28.44 kHz; measurement range 100 mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>Accuracy</td>
</tr>
<tr>
<td>DC</td>
<td>Typical ± 0.15% Guaranteed ± 0.45%</td>
</tr>
<tr>
<td>10 Hz ... 100 Hz</td>
<td>± 0.1% Guaranteed ± 0.3%</td>
</tr>
<tr>
<td>10 Hz ... 1 kHz</td>
<td>± 0.15% / -0.2% Guaranteed ± 0.5%</td>
</tr>
<tr>
<td>10 Hz ... 10 kHz</td>
<td>± 0.15% / -1.0% Guaranteed ± 2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6-32:</th>
<th>Sampling rate 9.48 kHz 3.16 kHz; measurement range 600 V, 100 V, 10 V, 1 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>Accuracy</td>
</tr>
<tr>
<td>DC</td>
<td>Typical ± 0.15% Guaranteed ± 0.5%</td>
</tr>
<tr>
<td>10 Hz ... 100 Hz</td>
<td>± 0.08% Guaranteed ± 0.2%</td>
</tr>
<tr>
<td>10 Hz ... 1 kHz</td>
<td>± 0.1% / -0.3% Guaranteed ± 0.5%</td>
</tr>
<tr>
<td>10 Hz ... 4 kHz (sampling rate 9.48 kHz)</td>
<td>± 0.1% / -0.5% Guaranteed ± 1.2%</td>
</tr>
<tr>
<td>10 Hz ... 1.4 kHz (sampling rate 3.16 kHz)</td>
<td>± 0.1% / -0.5% Guaranteed ± 1.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6-33:</th>
<th>Sampling rate 9.48 kHz 3.16 kHz; measurement range 100 mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>Accuracy</td>
</tr>
<tr>
<td>DC</td>
<td>Typical ± 0.15% Guaranteed ± 0.5%</td>
</tr>
<tr>
<td>10 Hz ... 100 Hz</td>
<td>± 0.1% Guaranteed ± 0.35%</td>
</tr>
<tr>
<td>10 Hz ... 1 kHz</td>
<td>± 0.15% / -0.35% Guaranteed ± 0.5%</td>
</tr>
<tr>
<td>10 Hz ... 4 kHz (sampling rate 9.48 kHz)</td>
<td>± 0.15% / -0.6% Guaranteed ± 1.2%</td>
</tr>
<tr>
<td>10 Hz ... 1.4 kHz (sampling rate 3.16 kHz)</td>
<td>± 0.15% / -0.6% Guaranteed ± 1.2%</td>
</tr>
</tbody>
</table>
The accuracy data contains linearity, temperature, long-term drift, and frequency.

Figure 6-21:
Typical frequency response with a sampling rate of 28.44 kHz and an input voltage of 70 V.

Figure 6-22:
Typical frequency response with a sampling rate of 9.48 kHz and an input voltage of 70 V.

Frequency response in the 100 V range (SR = 28.44 kHz)

<table>
<thead>
<tr>
<th>Frequency in kHz</th>
<th>Rel. Error in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Frequency response in the 100 V range (SR = 9.48 kHz)

<table>
<thead>
<tr>
<th>Frequency in kHz</th>
<th>Rel. Error in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

1. **Relative error:** \[
\text{Actual - Expected} \quad \text{Full scale} \times 100 \%
\]

2. **3Sigma\(_{\text{max}}\)** represents the maximum of the 3Sigma values of all 10 input channels. The 3Sigma\(_{\text{max}}\) value of an analog input are determined from 50 measurement values.
Figure 6-23:
Typical AC linear progression at 50 Hz and a sampling rate of 28.44 kHz

6.10.6.2 Channel Cross-Talk

Conditions: sinusoidal form infeed on a channel without overload, AC measurement on neighboring channel, integration time 1 s.

Table 6-34: Cross talk dampening

<table>
<thead>
<tr>
<th>Measurement range</th>
<th>600 V</th>
<th>100 V</th>
<th>10 V</th>
<th>1 V</th>
<th>100 mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dampening in dB</td>
<td>80</td>
<td>105</td>
<td>95</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

Cross talk dampening on channels of the same potential groups in dB at f = 50 Hz

Table 6-35: Cross talk dampening

<table>
<thead>
<tr>
<th>Measurement range</th>
<th>600 V</th>
<th>100 V</th>
<th>10 V</th>
<th>1 V</th>
<th>100 mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dampening in dB</td>
<td>65</td>
<td>80</td>
<td>75</td>
<td>95</td>
<td>95</td>
</tr>
</tbody>
</table>

Cross talk dampening on channels of the same potential groups in dB at f = 500 Hz

The cross-talk dampening on a neighboring channel of another potential group is greater than 120 dB in all measurement ranges (f = 50 Hz or 500 Hz).

1 a) Relative error: \(\frac{\text{Actual - Expected}}{\text{Full scale}} \times 100 \%

1 b) 3Sigma\(_{\text{max}}\) represents the maximum of the 3Sigma values of all 10 input channels. The 3Sigma\(_{\text{max}}\) value of an analog input are determined from 50 measurement values.
6.10.6.3 **Accuracy of Phase Measurement**

Figure 6-24: Phase error as function of input voltage

Conditions: integration time 1 s, measurement signal sinusoidal, measurement range 100 V, f = 50 Hz, sampling rate 28.44 kHz.

Figure 6-25: Phase error as function of sampling rate

Conditions: integration time 1 s, measurement signal sinusoidal, measurement range 100 V, f = 50 Hz, sampling rate 28.44 kHz.
Conditions: integration time 1 s, measurement signal sinusoidal, sampling rate = 28.44 kHz, measurement range 100 V, excitation on both channels 20 Vrms.

The maximum input frequency for the phase measurement depends on the sampling rate.

Table 6-36: Sampling rate and input frequency range

<table>
<thead>
<tr>
<th>Sampling rate</th>
<th>Input frequency range</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.44 kHz</td>
<td>10 Hz ... 2.30 kHz</td>
</tr>
<tr>
<td>9.48 kHz</td>
<td>10 Hz ... 750 Hz</td>
</tr>
<tr>
<td>3.16 kHz</td>
<td>10 Hz ... 250 Hz</td>
</tr>
</tbody>
</table>

Note:

1. The measurement accuracy of phase can be improved by:
 - increasing the integration time
 - enabling the recursive averaging function

2. When measuring very small phase shifts (less than 0.2 °), the sign (positive or negative) of the measurement results can not be definitely determined. If this causes a problem, please refer to the phase measurement in the harmonic analysis.

3. For measuring phase, the input voltage should be greater than 5 % of full scale. An overload of the measurement channel does not negatively affect the obtainable accuracy.
6.10.6.4 Accuracy of Frequency Measurement

Figure 6-27: Error in the frequency measurement as a function of the input voltage

Conditions: integration time 1 s, measurement signal sinusoid.

The maximum input frequency for the frequency measurement depends on the sampling rate.

Table 6-37: Sampling rate and input frequency range.

<table>
<thead>
<tr>
<th>Sampling rate</th>
<th>Input frequency range</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.44 kHz</td>
<td>10 Hz ... 1500 Hz</td>
</tr>
<tr>
<td>9.48 kHz</td>
<td>5 Hz ... 500 Hz</td>
</tr>
<tr>
<td>3.16 kHz</td>
<td>5 Hz ... 150 Hz</td>
</tr>
</tbody>
</table>

Conditions: Excitation greater than 10 % from measurement full scale, duty cycle 50 %.

Note: With the harmonic analysis, input frequencies up to 3.4 kHz can be measured.
6.10.6.5 Accuracy of Power Measurement

General

The power is calculated from one current channel and one voltage channel:

\[
\text{Active power: } P = \frac{1}{T} \int_0^T u(t)^* i(t) \, dt \quad [W]
\]

\[
\text{Apparent power: } S = V_{\text{rms}} \times I_{\text{rms}} \quad [VA]
\]

\[
\text{Reactive power: } Q = \sqrt{S^2 - P^2} \quad [\text{var}]
\]

\[
U_{\text{rms}} = \sqrt{\frac{1}{T} \int_0^T u(t)^2 \, dt}, \quad I_{\text{rms}} = \sqrt{\frac{1}{T} \int_0^T i(t)^2 \, dt}
\]

Accuracies

Conditions: integration time 1s, measurement signal sinusoidal, excitation 10-100 %, accuracy references the apparent power, error of the current clamp is not taken into account.

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Power</th>
<th>Accuracy¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Typical</td>
<td>Guaranteed</td>
</tr>
<tr>
<td>10 Hz ... 100 Hz</td>
<td>(S)</td>
<td>± 0.3 %</td>
</tr>
<tr>
<td></td>
<td>(P)</td>
<td>± 0.3 %</td>
</tr>
<tr>
<td></td>
<td>(Q)</td>
<td>± 0.8 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Power</th>
<th>Accuracy¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Typical</td>
<td>Guaranteed</td>
</tr>
<tr>
<td>10 Hz ... 2.2 kHz</td>
<td>(S)</td>
<td>± 0.3 % / - 1.2 %</td>
</tr>
<tr>
<td></td>
<td>(P)</td>
<td>± 0.3 % / - 1.2 %</td>
</tr>
<tr>
<td></td>
<td>(Q)</td>
<td>± 0.8 % / - 2.5 %</td>
</tr>
</tbody>
</table>

¹ Relative error: \(\frac{\text{Actual} - \text{Expected}}{\text{Full scale}}\) \times 100 %

\(S = \) Apparent power

\(P = \) Active power

\(Q = \) Reactive power
Table 6-40: Sampling rate 9.48 kHz

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Power</th>
<th>Accuracy¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td></td>
<td>Typical</td>
</tr>
<tr>
<td>10 Hz ... 750 Hz</td>
<td>S</td>
<td>+ 0.3 % / - 0.7 %</td>
</tr>
<tr>
<td>10 Hz ... 750 Hz</td>
<td>P</td>
<td>+ 0.3 % / - 0.7 %</td>
</tr>
<tr>
<td>10 Hz ... 750 Hz</td>
<td>Q</td>
<td>+ 0.8 % / - 1.2 %</td>
</tr>
</tbody>
</table>

Table 6-41: Sampling rate 3.16 kHz

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Power</th>
<th>Accuracy¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td></td>
<td>Typical</td>
</tr>
<tr>
<td>10 Hz ... 250 Hz</td>
<td>S</td>
<td>+ 0.3 % / - 0.5 %</td>
</tr>
<tr>
<td>10 Hz ... 250 Hz</td>
<td>P</td>
<td>+ 0.3 % / - 0.5 %</td>
</tr>
<tr>
<td>10 Hz ... 250 Hz</td>
<td>Q</td>
<td>+ 0.8 % / - 1 %</td>
</tr>
</tbody>
</table>

Table 6-42: DC accuracy

<table>
<thead>
<tr>
<th>Power</th>
<th>Accuracy¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>Typical</td>
</tr>
<tr>
<td>P, S</td>
<td>± 0.3 %</td>
</tr>
</tbody>
</table>

¹ Relative error: \[
\frac{\text{Actual} - \text{Expected}}{\text{Full scale}} \times 100 \%
\]

S = Apparent power
P = Active power
Q = Reactive power

Note: The accuracy specifications include linearity, temperature, ageing drift, frequency and phase response.
Figure 6-28:
Typical error of the apparent power S as function of the excitation, $f_s = 28.44$ kHz, $f_{in} = 50$ Hz

![Graph showing typical error of apparent power S as function of excitation](image)

Figure 6-29:
Typical error of the active power P as a function of the excitation considering the apparent power, $f_s = 28.44$ kHz, $f_{in} = 50$ Hz

![Graph showing typical error of active power P as function of excitation](image)
Figure 6-30:
Typical error of the reactive power Q as a function of the excitation, $f_s = 28.44\ kHz$, $f = 50\ Hz$

![Typical error of reactive power Q as function of the excitation](image)

Conditions: integration time 1s, measurement signal sinusoid, sampling rate = 28.44 kHz, $f = 50\ Hz$

Figure 6-31:
Typical error1 of the reactive power Q as a function of the phase shift considering the apparent power, $f_s = 28.44\ kHz$, $f = 50\ Hz$, excitation CH1 and CH2 = 70\%.

![Typical error of reactive power Q as function of the phase shift](image)

Conditions: integration time 1s, measurement signal sinusoidal, sampling rate = 28.44 kHz, both channels with same excitation 70\%.

1 The 3Sigma values are determined from 50 measurement values.
Note:

- For very small phase shifts (< 0.3 °) and small excitation (< 10 %), too small integration time (< 1 s) or sampling rate 3.16 kHz, the sign of the reactive power cannot definitely be determined.

- The accuracy of the power measurement depends primarily on the accuracy of the current clamp (refer to section 9.5, "Current Clamp C-PROBE1" on page 112).

6.10.7 Harmonic Analysis

This operating mode is designed for measuring stationary signals (e.g., not sinusoid shaped). The input signal is separated into fundamental and harmonic waves (Fourier Analysis).

The following items are measured:

- frequency of the fundamental wave
- amplitude of the fundamental and harmonic waves
- phase shifts between the fundamental and harmonic waves (also from the different channels)

The input signals are captured. Finally, the calculation of the measurement items is carried out. During this time, the input signal is not taken into consideration.
6.10.7.1 Accuracy of Frequency Measurement

The permitted input frequency range depends on the specified sampling rate:

Table 6-43: Sampling rate and input frequency range

<table>
<thead>
<tr>
<th>Sampling rate</th>
<th>Input frequency range</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.44 kHz</td>
<td>49 Hz ... 3400 Hz</td>
</tr>
<tr>
<td>9.48 kHz</td>
<td>17 Hz ... 1100 Hz</td>
</tr>
<tr>
<td>3.16 kHz</td>
<td>5 Hz ... 380 Hz</td>
</tr>
</tbody>
</table>

Figure 6-32: Accuracy of frequency measurement as function of the voltage signal

Conditions: sampling rate 9.48 kHz, fin=20 Hz ... 1 kHz

Note: Through recursive averaging, the measurement uncertainty can be further reduced.
6.10.7.2 Accuracy of Amplitude Measurement

The measurement values are given as effective values (rms).

The permitted input frequency range for the fundamental wave depends on the specified sampling rate:

<table>
<thead>
<tr>
<th>Sampling rate</th>
<th>Input frequency range</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.44 kHz</td>
<td>100 Hz (= fmin) ... 3200 Hz</td>
</tr>
<tr>
<td>9.48 kHz</td>
<td>30 Hz (= fmin) ... 1000 Hz</td>
</tr>
<tr>
<td>3.6 kHz</td>
<td>10 Hz (= fmin) ... 350 Hz</td>
</tr>
</tbody>
</table>

Valid for fundamental and harmonic waves in specified frequency range; accuracy refers to full scale.

Table 6-44:
Sampling rate and input frequency range

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
<td>Guaranteed</td>
</tr>
<tr>
<td>fmin ... 1 kHz</td>
<td>± 0.1 %</td>
</tr>
<tr>
<td>fmin ... 10 kHz</td>
<td>± 0.3 %</td>
</tr>
</tbody>
</table>

Table 6-45:
Sampling rate 28.44 kHz, measurement range 600 V, 100 V, 10 V, 1 V

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
<td>Guaranteed</td>
</tr>
<tr>
<td>fmin ... 1 kHz</td>
<td>± 0.2 %</td>
</tr>
<tr>
<td>fmin ... 10 kHz</td>
<td>± 0.5 %</td>
</tr>
</tbody>
</table>

Table 6-46:
Sampling rate 28.44 kHz, measurement range 100 mV

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
<td>Guaranteed</td>
</tr>
<tr>
<td>fmin ... 1 kHz</td>
<td>± 0.1 %</td>
</tr>
<tr>
<td>fmin ... 10 kHz</td>
<td>± 0.1 % / - 0.7 % ± 1.1 %</td>
</tr>
</tbody>
</table>

Table 6-47:
Sampling rate 9.48 kHz, 3.16 kHz, measurement range 600 V, 100 V, 10 V, 1 V

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
<td>Guaranteed</td>
</tr>
<tr>
<td>fmin ... 100 Hz</td>
<td>± 0.1 %</td>
</tr>
<tr>
<td>fmin ... 1 kHz</td>
<td>± 0.1 % / - 0.5 % ± 0.8 %</td>
</tr>
<tr>
<td>fmin ... 4 kHz</td>
<td>± 0.1 % / - 0.8 % ± 1.2 %</td>
</tr>
<tr>
<td>sampling rate = 9.48 kHz</td>
<td></td>
</tr>
<tr>
<td>fmin ... 1.4 kHz</td>
<td>± 0.1 % / - 0.8 % ± 1.2 %</td>
</tr>
<tr>
<td>sampling rate = 3.16 kHz</td>
<td></td>
</tr>
</tbody>
</table>
Table 6-48: Sampling rate and input frequency range

<table>
<thead>
<tr>
<th>Measurement Range</th>
<th>Sampling Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mV</td>
<td>9.48 kHz</td>
</tr>
<tr>
<td></td>
<td>3.16 kHz</td>
</tr>
</tbody>
</table>

Table 6-49: Accuracy of phase measurement as a function of the excitation

<table>
<thead>
<tr>
<th>Excitation in %</th>
<th>Average</th>
<th>Avg±3Sigmamax</th>
<th>Avg-3Sigmamax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
<td>-0.5</td>
</tr>
<tr>
<td>50</td>
<td>1.5</td>
<td>3</td>
<td>-1.5</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>4</td>
<td>-2</td>
</tr>
</tbody>
</table>

Note: Through recursive averaging, the measurement uncertainty can be reduced further.

6.10.7.3 Accuracy of Phase Measurement

The permitted input frequency range for the fundamental wave depends on the specified sampling rate:

<table>
<thead>
<tr>
<th>Sampling rate</th>
<th>Input frequency range</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.44 kHz</td>
<td>100 Hz ... 3200 Hz</td>
</tr>
<tr>
<td>9.48 kHz</td>
<td>30 Hz ... 1000 Hz</td>
</tr>
<tr>
<td>3.16 kHz</td>
<td>10 Hz ... 350 Hz</td>
</tr>
</tbody>
</table>

Conditions: sampling rate 9.48 kHz, fin = 50 Hz.
6.10.8 **Transient Recording**

In this operating mode, transient signals on up to 10 input channels can be recorded synchronously.

The recording starts whenever a pre-defined trigger condition is met. The selectable trigger conditions are:

- Trigger on threshold with positive or negative edge
- Combination of different power quality triggers (sag, swell, harmonic, frequency, frequency change, notch)

In addition, a time offset for the capture window relative to the trigger event can be specified. The trigger delay can be

- positive (recording begins after the trigger event)
- or negative (recording begins already before the trigger event).

![Figure 6-33: Illustration of the relationship between trigger events, trigger delay, and recording time](image)

Note: More details about triggering methods can be found in the OMICRON Test Universe Help and in the practical examples of the ELT-1 option.

The maximum length of the recording depends on the settings for the sample rate and the number of channels to be captured.
Table 6-51:
The maximum recording time depends on the number of active channels and the sampling frequency.

<table>
<thead>
<tr>
<th>Number of active channels</th>
<th>Maximum recording time [s] at fs = 28.4 kHz</th>
<th>Maximum recording time [s] at fs = 9.48 kHz</th>
<th>Maximum recording time [s] at fs = 3.16 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.16 s</td>
<td>105.47 s</td>
<td>316.41 s</td>
</tr>
<tr>
<td>2</td>
<td>17.58 s</td>
<td>52.73 s</td>
<td>158.20 s</td>
</tr>
<tr>
<td>3</td>
<td>11.72 s</td>
<td>35.16 s</td>
<td>105.47 s</td>
</tr>
<tr>
<td>4</td>
<td>8.79 s</td>
<td>26.37 s</td>
<td>79.10 s</td>
</tr>
<tr>
<td>5</td>
<td>7.03 s</td>
<td>21.09 s</td>
<td>63.28 s</td>
</tr>
<tr>
<td>6</td>
<td>5.86 s</td>
<td>17.58 s</td>
<td>52.73 s</td>
</tr>
<tr>
<td>7</td>
<td>5.02 s</td>
<td>15.07 s</td>
<td>45.20 s</td>
</tr>
<tr>
<td>8</td>
<td>4.40 s</td>
<td>13.18 s</td>
<td>39.55 s</td>
</tr>
<tr>
<td>9</td>
<td>3.91 s</td>
<td>11.72 s</td>
<td>35.15 s</td>
</tr>
<tr>
<td>10</td>
<td>3.52 s</td>
<td>10.55 s</td>
<td>31.64 s</td>
</tr>
<tr>
<td>11¹</td>
<td>3.20 s</td>
<td>9.59 s</td>
<td>28.76 s</td>
</tr>
</tbody>
</table>

¹ All binary inputs are stored as one channel.

Accuracy of the sampling value:

• measurement ranges 600 V, 100 V, 10 V, 1 V:
 ± 0.2 % typical
 ± 0.5 % guaranteed

• measurement range 100 mV:
 ± 0.3 % typical
 ± 0.6 % guaranteed

The accuracy data are full scale errors.

6.10.9 Trend Recording

In Trend Recording Mode, you can make a historical plot of various measurements over time. It is possible to measure RMS voltage, RMS current, phase, real, apparent and reactive power and the power factor.

The main view has a CTS Chart. Each selected measurement function appears in a separate diagram (i.e. all frequency measurements in the frequency diagram). RMS current and voltage appear in separate diagrams. Time is displayed in seconds on the x-axis. The diagram is scrolled from right-to-left as new data is recorded.
6.11 Option LLO-2 (Low Level Outputs)

The LLO-2 option ("LL out 7 - 12") represents an additional SELV (SELV = Safety Extra Low Voltage) interface connector holding two independent generator triples. These six high accuracy analog signal sources can serve to either control an external amplifier or to directly provide small signal outputs.

The outputs 7-12 extend the low level outputs 1-6 ("LL out 1-6") by two more independent generator triples. Outputs 7-12 are technically identical to outputs 1-6.

For more information please refer section 6.3.5, "Low Level Outputs "LL out" for External Amplifiers" on page 52.
7 INCREASING THE OUTPUT POWER, OPERATING MODES

The CMC 356 has a very large application diversity. The current outputs offer enough output power to test all electromechanical relays. In particular, the CMC 356 offers a variety of types of single-phase operation using its two galvanically separated three-phase current outputs with which the output power from the units can be significantly increased.

In cases when the current or the output power - or even the number of independent voltages or currents - is insufficient, it is possible to switch individual amplifier groups of the CMC 356 in parallel or to connect external amplifiers (up to six independent additional channels) to the "LL out 1-6". The option "LLO-2" extends the low level outputs by two more independent generator triples “LL out 7-12" (refer to section 6.11, "Option LLO-2 (Low Level Outputs)" on page 90).

The operating modes illustrated in the following sections can be set in the Hardware Configuration of the OMICRON Test Universe software.

7.1 Safety Instructions for High Current Output

Observe the following safety instructions when using the operating modes and connection methods described in this chapter.

- For currents greater than 25 A, the test object (load) should be exclusively connected to the 4 mm/0.16 " banana sockets and not to the generator combination socket.

- Since a current of 32 A flowing through a test lead (2 m/6 ft. legth, 2.5 mm²) causes a loss of 15 ... 18 W, we recommend to use the connection methods shown in this chapter.

- When connecting current outputs in parallel, it has to be ensured that the test leads are only connected together immediately at the test object and that the test leads have sufficient diameter.

- At maximum amplitude of the 128 A mode, the cable losses can amount to 112 W for AC and 280 W for DC operation.

- At maximum amplitude of the 64 A mode, the cable losses can amount to 28 W for AC and 140 W for DC operation.

- For applications drawing DC current: The test object (load) should be exclusively non-inductive! Note that a load of, for example, 1 Henry can store 50 J (Joule) at 10 A DC for a long period of time. Electrical shocks with more than 350 mJ can be life-hazardous for the user.
7.2 Single-Phase Operation of the CMC 356

7.2.1 1 x 32 A High Burden Mode (L-L-L-L)

1 x 0 ... 32 A (±45 A_{DC}), max. 140 V_{peak}, 1 x 1740 VA at 25 A

Both amplifier groups CURRENT OUTPUT A and CURRENT OUTPUT B are connected in series. The currents 1 and 2 of a group are phase-opposite. This results in four times the compliance voltage of a single output.

Observe the safety instructions given in Section 7.1 on page 91 when using this operating mode.

Figure 7-1: Single-phase operation, 1 x 32 A high burden mode

\[V' = 4 \times V \]

Refer to the output curves shown in the figures 6-1 through 6-5 in section 6.3.2, "Current Outputs" on page 43.
7.2.2 1 x 64 A High Burden and High Current Mode (L-L)

1 x 0 ... 64 A (±90 A_{DC}), max. 70 V_{peak}, 1 x 1740 VA at 50 A

The currents 1 and 2 of each group are phase-opposite. In addition, the groups A and B are connected in parallel.

Observe the safety instructions given in Section 7.1 on page 91 when using this operating mode.

Refer to the output curves shown in the figures 6-1 through 6-5 in section 6.3.2, "Current Outputs" on page 43.
7.2.3 1 x 128 A High Current Mode (LL-LN)

1 x 0 ... 128 A (±180 A_{DC}), max. 35 V_{peak}, 1 x 1000 VA at 80 A

Since the current over the N socket is limited to 32 A_{rms} (45 A_{DC}), the third phase is used to support the N socket. The currents 1, 2 of groups A and B are connected in parallel.

Observe the safety instructions given in Section 7.1 on page 91 when using this operating mode.

Refer to the output curves shown in the figures 6-1 through 6-5 in section 6.3.2, "Current Outputs" on page 43.
7.2.4 Single-Phase Voltage

1 x 0 ... 300 V, 1 x 200 VA [100 ... 300 V] typical

Figure 7-4: Single-phase operation of the voltage system (L-N)

1 x 0 ... 600 V, 1 x 275 VA [200 ... 600 V] typical

Figure 7-5: Single-phase operation of the voltage system (L-L phase opposition)

Refer to the output curves shown in the figures 6-8 through 6-9 in section 6.3.3, "Voltage Outputs" on page 48.

Note: Never connect N’ or any other phase to GND (PE). This can cause life-hazardous situations to persons and damage to property.
7.3 **Two-Phase Operation**

For some applications it is beneficial to have two independent currents, each higher than 32 A\text{rms}, or a higher compliance voltage available.

7.3.1 **2 x 64 A High Current Mode (LL-LN)**

2 x 0 ... 64 A (±90 A\text{DC}), max. 35 V\text{peak}, 2 x 500 VA at 40 A

Since the current over the N socket is limited to 32 A\text{rms} (45 A\text{DC}), the third phase is used to support the N socket.

Observe the safety instructions given in Section 7.1 on page 91 when using this operating mode.

Figure 7-6: Two-phase operation, 2 x 64 A high current mode
7.3.2 2 x 32 A High Burden Mode (L-L)

2 x 0 ... 32 A (±45 A_{DC}), max. 70 V_{peak}, 2 x 870 VA at 25 A

The currents 1 and 2 of each group are phase-opposite.

Observe the safety instructions given in Section 7.1 on page 91 when using this operating mode.
7.4 Three-Phase Current Mode with High Burden

3 x 0 ... 32 A (±45 A\text{DC}), max. 70 V\text{peak}, 3 x 860 VA at 25 A

For loads with three separate phases it is possible to double the available compliance voltage. However, this configuration does not make sense, if a common N connector is required! Do not connect N1, N2 and N3 to each other!

Observe the safety instructions given in Section 7.1 on page 91 when using this operating mode.

Figure 7-8: Three-phase operation
7.5 Operation with External Amplifiers

The connections "LL out 1-6" offer a large variety of extension possibilities. They enable the connection of external amplifiers in order to increase the number of independent voltage or current channels and thus provide the possibility to realize additional applications the CMC 356 alone cannot cover.

Each LL output socket ("LL out 1-6" and the optional "LL out 7-12") can connect up to four external amplifiers with six independent channels.

The following configurations are possible:

• 9 × 25 A_{rms} / 70 VA for differential relays in three galvanically separated current triples with CMC 356 + CMA 156.

• 6 × 250 V / 75 VA for the synchronization in two galvanically separated voltage triples with CMC 356 + CMS 156.

For a complete overview of the supported configurations of the CMC 356 and CMA/S amplifiers see the OMICRON Test Universe Help, topic Hardware Configuration.
8 TROUBLESHOOTING

8.1 Troubleshooting Guide

In case of operational problems with the CMC 356 proceed as follows:

1. Consult the reference manual or the Test Universe Help.
2. Check whether the malfunction is reproducible and document it.
3. Try to isolate the malfunction by using another computer, test set or connecting cable, if available.
4. Note the exact wording of any error message or unexpected conditions.
5. If you contact the OMICRON technical support, please attach:
 - your company name as well as a phone number and e-mail address
 - the serial number of your test set
 - information about your computer: Manufacturer, type, memory, installed printers, operating system (and language) and the installed version and language of the OMICRON Test Universe software.
 - screenshots or the exact wording of possible error messages.
6. If you call the OMICRON hotline, please have your computer and test set available and be prepared to repeat the steps that caused the problem.

To speed up the support, please attach the following diagnostic log files:

- **Communication log file**
 This file records any communication between the CMC 356 and the computer. To send the log file to the OMICRON technical support:
 1. Close all other applications.
 2. From the Test Universe Start Page, select Calibration & Diagnosis… and then Logfile.
 3. Select Logging on (Detailed) in the Edit menu and minimize the window.
 4. Start the test module and reproduce the malfunction.
 5. Go back to the log file and select Send in the File menu to submit the log file via e-mail to the OMICRON technical support.

- **Hardware check log file**
 Each time a test module starts, an internal hardware self-check is performed. The results of this test are stored in the hwcheck.log file.

To open the log file, select Calibration & Diagnosis… and then Hardware Check from the Test Universe Start Page.
8.2 Potential Errors, Possible Causes, Remedies

Some potential disruptions that may occur while operating the CMC 356 are listed below. Try to eliminate them by applying the remedies proposed here.

<table>
<thead>
<tr>
<th>Error</th>
<th>Possible causes</th>
<th>Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power switch does not light up after turning on the CMC 356 test set.</td>
<td>There is no power to the test set.</td>
<td>Check the power supply and assure that it supplies power to the test set.</td>
</tr>
<tr>
<td></td>
<td>The fuse of the test set is blown</td>
<td>Unplug the power cord from the power source! Replace the fuse: T 12.5 AH 250 V (5 x 20 mm). Please contact the OMICRON technical support (refer to section "Contact Information / Technical Support" on page 137).</td>
</tr>
<tr>
<td></td>
<td>Malfunction of internal test set components</td>
<td></td>
</tr>
<tr>
<td>The following message appears in the status line: "WARNING: Broken ground connection! Immediately turn off the test set! Resuming the operation can result in hazard to life and is done at your own risk."</td>
<td>Ground-wire connection to the CMC 356 is broken or the test set is powered by an earth-free power supply.</td>
<td>Check the ground connection. Ground the housing of the test set separately using the PE connection socket (on the back panel of the test set).</td>
</tr>
</tbody>
</table>
8.3 Overheating

If a thermal shutdown occurs because of loading the voltage or current outputs a long time by high burden, the Test Universe displays the following messages respectively in the Status History window:

- “Voltage overtemperature:” followed by a list of the affected outputs

 “CMC switched off.”
 “Test stopped with error.”

- “Current overtemperature:” followed by a list of the affected outputs

 “CMC switched off.”
 “Test stopped with error.”

The thermal shutdown can be avoided by reducing the compliance voltage of the current amplifiers, i.e., to optimize the output power limit of the current outputs set the compliance voltage of the internal current amplifiers.

To do so, go to the Compliance Voltage group box of the Output Configuration Details dialog box in the Test Universe Hardware Configuration.

By reducing the power supply voltage, the ON-time can be prolonged considerably for low-ohmic burdens, because this causes the internal amplifier to consume less power. Hence, the internal heat dissipation can be reduced, especially when testing with low burden test objects. This then considerably extends the time until the device switches OFF due to thermal overload.

For more detailed information refer to the Test Universe Help. Select the Hardware Configuration Help and navigate to the topic Setting the Current Output Power Limit of CMC Test Sets.
9 CMC 356-RELATED PRODUCTS AND ACCESSORIES

This chapter describes the optional equipment for the CMC 356 test set. In the following the amplifiers CMA 56, CMA 156, CMS 156, CMS 251 and CMS 252 are jointly named CMA/S. Please visit the OMICRON Web site www.omicron.at for up-to-date information.

9.1 CMA Current Amplifiers & CMS Voltage Amplifiers

The CMA/CMS external amplifiers are controlled by the CMC 356 test set via the “LL out 1-6” on the rear panel of the test set as shown in figure 9-1 below. The option LLO-2 extends the low level outputs by two more independent generator triples “LL out 7-12” (refer to section 6.11, “Option LLO-2 (Low Level Outputs)” on page 90).

Figure 9-1: Connecting a CMA/S amplifier to the CMC 356

Table 9-1: Technical data of CMA/S amplifiers

<table>
<thead>
<tr>
<th>Amplifier</th>
<th>Output configurations</th>
<th>Output power</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMA 156</td>
<td>6-phase current amplifier (Group A, B)</td>
<td>6 × 70 VA at 7.5 A</td>
<td>Amplitude accuracy: error < 0.1 %. Weight: 15.4 kg (34 lbs)</td>
</tr>
<tr>
<td></td>
<td>6 × 25 A (L-N)</td>
<td>3 × 140 VA at 15 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 × 50 A (L-N)</td>
<td>2 × 225 VA at 22.5 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 × 75 A (3L-N)</td>
<td>1 × 420 VA at 45 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 × 150 A (3L-N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMS 156</td>
<td>3-phase current/voltage amplifier</td>
<td>3 × 75 VA</td>
<td>Amplitude accuracy: error < 0.1 %. Weight: 14.7 kg (32.4 lbs)</td>
</tr>
<tr>
<td></td>
<td>3 × 250 V (L-N)</td>
<td>1 × 150 VA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 × 500 V (L-L)</td>
<td>3 × 70 VA at 7.5 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 × 25 A (L-N)</td>
<td>1 × 210 VA at 22.5 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 × 75 A (3L-N)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Detailed information about the CMA/S amplifiers can be found in the corresponding user manuals, the product catalog, or on the OMICRON Web site www.omicron.at.

For ordering information about the individual OMICRON amplifiers, please refer to table 9-5, "Order numbers overview" on page 128.
9.2 CMControl-6

Figure 9-2: CMControl-6 attached to a CMC 256plus (or in the same manner to a CMC 356) test set

The CMControl is a front panel control device for CMC test sets. Its instant availability and its easy operation concept make it the ideal solution for the quick verification of test objects.

The CMControl provides an intuitive touch screen user interface that makes setting up tests particularly easy and convenient. The control wheel allows quick and accurate adjustment of the output quantities. The included test tools and integrated fault models cover almost all common test tasks and support the tester in getting reliable results quickly.

The CMControl can either be used attached to the CMC test set as front panel control or detached as a handheld control device. Its magnetic rear allows easy attachment to standard racks while its built-in stand works perfectly on every table.

The CMControl is available in two variations: CMControl-6 for CMC 356, CMC 256plus and CMC 256-6, and CMControl-3 for CMC 353.

The rugged Ethernet connector ensures reliable communication with the CMC test set. The CMControl is designed to optimally meet the requirements for commissioning and maintenance of protection devices and substations.

For ordering information about the CMControl, refer to table 9-5, "Order numbers overview" on page 128.
9.3 Time Synchronization Accessories

9.3.1 CMGPS

You can synchronize two or more CMC test sets by connecting a CMGPS synchronization unit to each of the test sets’ "ext. Interf." inputs. Since the GPS (Global Positioning System) signal is available worldwide, the physical distance between these test sets is thereby of no relevance ("end to end" testing).

For detailed information about the CMGPS, please refer to the CMGPS reference manual, the product catalog, or the OMICRON Web site www.omicron.at. For ordering information about the CMGPS, refer to table 9-5, "Order numbers overview" on page 128.

Table 9-2: Basic technical data of the CMGPS synchronization unit

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse outputs</td>
<td>2</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Error < ±1 µs or ±5 µs</td>
</tr>
<tr>
<td>Synchronization of test sets¹</td>
<td>Error < 100 µs / < 5 µs (voltage amplifier)</td>
</tr>
<tr>
<td></td>
<td>Error < 100 µs / < 20 µs (current amplifier)</td>
</tr>
<tr>
<td>Connection</td>
<td>Voltage supply from the CMC 356 test set. Configured by the Test Universe software.</td>
</tr>
<tr>
<td>Weight</td>
<td>440 g (1 lbs)</td>
</tr>
<tr>
<td>Dimensions W x H x D</td>
<td>140 x 70 x 40 mm (5.5 x 2.8 x 1.6")</td>
</tr>
</tbody>
</table>

¹ Error corresponds to amplifier output signals (voltage/current) of CMGPS-synchronized test sets at configured GPS trigger event.

5 µs / 20 µs: enhanced mode only in supported Test Universe test modules (refer to Test Universe Help, topic “Time Trigger Configuration”).
Figure 9-4: CMGPS connected to antenna via 2 × 20 m extension cables

For cases that may require an extension of the antenna cable, an optional set of 2 × 20 m cables is available from OMICRON. For ordering information, refer to table 9-5, "Order numbers overview" on page 128.

Figure 9-5: Adapter to connect the extension cables to CMGPS and antenna
9.3.2 CMIRIG-B

Via the CMIRIG-B interface box you can connect devices to the CMC 356 test set that either transmit or receive the IRIG-B time reference signal (DC level shift protocol B00x). That way, two or more CMC test sets are synchronized. Furthermore, an optional CMGPS synchronization unit can be integrated into the test setup to serve as source of the synchronization moment or 1PPS signal, respectively. CMC 356 decodes (when receiving) or encodes (when transmitting) the IRIG-B protocol. The IRIG-B protocol extensions required by standard IEEE C37.118 are supported as well.

The most significant functional enhancement of those Test Universe test modules supporting the IRIG-B time reference is the starting and synchronizing of CMC 356 states (signal output) with high accuracy synchronous to the IRIG-B\(^1\) time reference or PPS/PPX\(^2\) signal, respectively; for example for PMU synchrophasor tests.

Figure 9-6: Typical test setup with CMIRIG-B (not true to scale)

- ① Test signals (e.g., 3 x current, 3 x voltage).
- ② IRIG-B/PPS source, e.g. GPS receiver with IRIG-B output.
- ③ IRIG-B/PPS receiver, e.g. protection relay, PMU.
- ④ Optional CMGPS synchronization unit (depends on the application).

Requirements:
- **CMC 356** standard test set with Ethernet ports.
- IRIG-B source or receiver with 5 V/TTL level; demodulated; DC level shift protocol (B00x).

\(^1\) IRIG stands for Inter Range Instrumentation Group and represents a serial time code format.

\(^2\) PPS: pulses per second
PPX: programmable PPS signal (pulse rate, e.g., 1 pulse per minute or one pulse per 10 seconds)
CMIRIG-B timing specifications

![CMIRIG-B Timing Diagram]

<table>
<thead>
<tr>
<th>Timing specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (delay time PPS source to PPX OUT)</td>
<td>< 1µs typ., 1.5µs max.</td>
</tr>
<tr>
<td>T2 (time skew PPX OUT to IRIG-B OUT)</td>
<td>< ± 0.1µs typ., ± 0.5µs max.</td>
</tr>
<tr>
<td>T3 (time error of time reference source to</td>
<td></td>
</tr>
<tr>
<td>analog outputs)</td>
<td></td>
</tr>
<tr>
<td>- Current outputs</td>
<td>± 5µs typ., ± 20µs guar.</td>
</tr>
<tr>
<td>- Voltage outputs</td>
<td>± 1µs typ., ± 5µs guar.</td>
</tr>
</tbody>
</table>

1 Valid for CMC 356 output frequencies < 100Hz and re-synchronized analog output signals.

For ordering information about the CMIRIG-B, refer to table 9-5, "Order numbers overview" on page 128.

For detailed information about the OMICRON CMIRIG-B interface box please refer to the CMIRIG-B Reference Manual.

Detailed information about the IRIG-B standard can be found, for example, in the IRIG SERIAL TIME CODE FORMATS publication at the url https://wsmrc2vger.wsmr.army.mil/rcc/manuals/200-04/index.html.

Detailed information about how to configure the Test Universe software component Time Trigger Configuration for the use of CMIRIG-B with or without CMGPS can be found in the CMIRIG-B Reference Manual and in the Test Universe Help, topics Time Trigger Configuration and Hardware Configuration (IRIG-B & GPS tab).
9.4 100TX to 100FX-SC Converter

This converter connects the CMC 356 to a network via fiber optics.

The 100TX to 100FX-SC Converter transfers data from a 10/100Base-TX copper to a fiber interface. It is designed to receive both data and power from PoE networks, and to pass on the data to a fiber optics connection.

Order number: VEHZ0021
9.5 Current Clamp C-PROBE1

Using the current clamp C-PROBE1 and the option ELT-1, direct and alternating currents can be measured via the analog measurement inputs of the BINARY / ANALOG INPUT section (refer to section 6.10, "Option ELT-1" on page 67).

C-PROBE1 is an active, DC-capable current probe and has two switchable measurement ranges.

For detailed information about the C-PROBE1 current clamp and the option ELT-1, please refer to the respective reference manuals, the product catalog, or visit the OMICRON Web site www.omicron.at.

Table 9-4: Basic technical data of C-PROBE 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. voltage of the leads</td>
<td>600 V<sub>rms</sub> to GND</td>
</tr>
<tr>
<td>Switch position</td>
<td>100 mV/A, 10 mV/A</td>
</tr>
<tr>
<td>Measurement ranges</td>
<td>0…10 A AC/DC, 0…80 A AC/DC</td>
</tr>
<tr>
<td>Frequency bandwidth</td>
<td>0 (DC)…10 kHz</td>
</tr>
</tbody>
</table>

For ordering information about the CPROBE-1, please refer to table 9-5, "Order numbers overview" on page 128.
9.6 Accessories for Meter Testing

9.6.1 Scanning Head OSH256

The passive optical scanning head OSH256 detects the status of an LED, that is either an optical pulse output from an energy meter or the binary status of a protective relay or other similar optical source.

Reuseable adhesive rubber compound (additionally screens the sensor from ambient light)

Order number: VEHZ2006

The OSH256 has a unique fixing method as the lightweight unit can be attached to smooth surfaces by means of its suction cup (figure below) or by a re-usurable adhesive rubber compound in case of a non-planar surface (figure above).
The OSH256 connects to the EXIF socket of a CMC 356 by means of the adapter cable VEHK0010 (refer to section 9.6.5, "Adapter Cable for Scanning Heads" on page 117) or a CMLIB B (refer to section 9.6.6, "CMLIB B" on page 118).

For relay testing applications the IFB256 serves to connect to a binary input of a CMC test set (refer to section 9.6.2 below).

9.6.2 Interface Box IFB256

Typically, the combination of a scanning head OSH256 with an interface box IFB256 is used for relay testing when binary information (a trigger signal) originates from a relay's LED. The IFB256 is directly connected to the EXIF socket of a CMC 356, which provides the auxiliary DC supply through the IFB256 to the scanning head. The binary signal is connected to the inputs of the CMC via banana plug leads.

Order number: VEHZ1152
9.6.3 Scanning Head TK 326

The photoelectric scanning head TK 326 is suitable for scanning of all known rotor marks of Ferraris meters and for scanning of LEDs up to the infrared wavelength range. It includes a spiral cable for the connection to the adapter cable or to a CMLIB B.

Figure 9-13: The photoelectric scanning head TK 326

Order number: VEHZ2008

The TK 326 connects to the EXIF socket of a CMC 356 by means of the adapter cable VEHK0010 (refer to section 9.6.5, "Adapter Cable for Scanning Heads" on page 117) or a CMLIB B (refer to section 9.6.6, "CMLIB B" on page 118).
9.6.4 Scanning Head TVS 6.15/1

The magnetic scanning head TVS 6.15/1 (dia. 32 mm/1.3”) is available for electronic meters with optical pulse outputs and matching mechanical interface.

Order number: VEHZ2004

The TVS 6.15/1 connects to the EXIF socket of a CMC 356 by means of the adapter cable VEHK0010 (section 9.6.5 on page 117) or a CMLIB B (section 9.6.6 on page 118).
9.6.5 Adapter Cable for Scanning Heads

The adapter cable VEHK0010 connects the scanning heads OSH256, TK 326 and TVS 6.15/1 directly to a CMC 356 test set. The scanning heads connection cable is simply extended by the adapter cable plugging the 5-pole LEMO connectors into each other. The 16-pole LEMO connector is plugged into the LEMO socket "ext. Interf." at the rear of a CMC test set. From there the scanning heads are supplied with 14 VDC and meter pulses are fed to the counter input of the CMC.

For ordering information about scanning heads, please refer to table 9-5, "Order numbers overview" on page 128.
9.6.6 CMLIB B

There are some meter testing applications where the simple adapter cable (section 9.6.5) does not prove sufficient for the test setup:

- if a reference meter is used and therefore two pulse inputs are required
- if the binary transistor outputs of a CMC 356 test set need to be accessed.

For these applications, the CMLIB B is used as interface.

For detailed information about the CMLIB B, please refer to the CMLIB B reference manual, the product catalog, or visit the OMICRON Web site www.omicron.at. For ordering information about the CMLIB B, please refer to table 9-5, "Order numbers overview" on page 128.
9.6.7 **CMLIB A**

CMLIB A is connected between a CMC test set and an amplifier to tap the analog low level signal outputs. Furthermore, *CMLIB A* can be connected to the analog control inputs of the optional amplifiers *CMA 156* and *CMS 156*.

Applications for *CMLIB A*:

- Connection of amplifiers that do not have an OMICRON connection socket to the CMC analog low level signal outputs.
- Connection of OMICRON amplifiers to controlling sources that do not have an OMICRON connection socket.
- Convenient tapping of the signals between the CMC test set and OMICRON amplifiers.

![Figure 9-18: CMLIB A](image)

Order number: VEHZ1101

The *CMLIB A* set (**VEHZ1105**) includes the *CMLIB A* interface box (VEHZ1101) as shown above in figure 9-18, and the 16-pole LEMO cable (**VEHK0003**) to connect the interface box to either a CMC test set or an OMICRON amplifier.
The *CMLIB A* accessory cables are to be ordered separately. Each order number represents one piece of cable.

9.6.8 CPOL Polarity Tester

The portable and easy-to-use *CPOL* Polarity Tester is designated to check a series of test points for correct polarity as a substitute for the battery checking method.

The *CMC 356* injects a special continuous voltage or current test signal at one point. Then *CPOL* checks the polarity at all terminals and provides a clear indication as to whether the polarity is OK (green LED) or not (red LED). This procedure is much faster than the conventional method and can easily be performed by a single person.

CPOL is used in conjunction with the *Polarity Checker* test tool that is part of the *Test Universe* software.

Order number: VEHZ0645
9.6.9 Connection Cable for REF 54x Relays (ABB) with Low Level Signal Inputs

This connection cable with twin-BNC clamp plugs type AMPHENOL 31-224 is tailored to connect ABB relays of the REF 54x series (with AMPHENOL twin-BNC bulkhead receptacles type 31-223) to the low level outputs of the CMC 356 (16-pole LEMO connector).

Order number: VEHK0120

Cable length: approx. 2.5 m (8.2 feet).

The six cable tails with the AMP connectors are labeled.

The CMC test set in such applications simulates unconventional transformers and/or Rogowski coils.
9.6.10 C-Shunt

C-Shunt 1 and C-Shunt 10 are precision shunts for current measurements. They can be directly inserted into the binary/analog inputs of a CMC 356 with ELT-1 option. The ELT-1 option enables the CMC 356 to measure analog signals; see 6.10 "Option ELT-1" on page 67.

Figure 9-21: C-Shunt 1

Order numbers:
C-Shunt 1: VEHZ0080
C-Shunt 10: VEHZ0081

<table>
<thead>
<tr>
<th>C-Shunt 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical resistance</td>
<td>0.001 Ω</td>
<td></td>
</tr>
<tr>
<td>Resistance Tolerance</td>
<td>0.1 %</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient</td>
<td>≥ 30 ppm/K in the range 0 ... +70 °C (32 ... +158 °F); according to IEC 60115-1 4.8</td>
<td></td>
</tr>
<tr>
<td>Maximum current</td>
<td>32 A continuous</td>
<td></td>
</tr>
<tr>
<td>Insulation class</td>
<td>600 V CAT II</td>
<td></td>
</tr>
</tbody>
</table>

C-Shunt 10 is a 10 mΩ precision shunt for current measurements. It can be directly inserted into the test set’s binary/analog inputs.

<table>
<thead>
<tr>
<th>C-Shunt 10</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical resistance</td>
<td>0.01 Ω</td>
<td></td>
</tr>
<tr>
<td>Resistance Tolerance</td>
<td>0.1 %</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient</td>
<td>≥ 18 ppm/K in the range 0 ... +70 °C (32 ... +158 °F); according to IEC 60115-1 4.8</td>
<td></td>
</tr>
<tr>
<td>Maximum current</td>
<td>12.5 A continuous</td>
<td></td>
</tr>
<tr>
<td>Insulation class</td>
<td>600 V CAT II</td>
<td></td>
</tr>
</tbody>
</table>
9.7 Wiring Accessories

9.7.1 Standard Delivery Scope

The following three articles belong to the standard delivery scope of a CMC 356 test set. They can, however, also be ordered separately.

1. Flexible test lead

Order number: VEHK0112

2 m (6 ft.) test lead to connect the CMC 356 output to other safety sockets of, for example, amplifiers, test objects or to banana adapters in control cabinets.

Specification: 1000 V/32 A

Amount supplied: 6 x red, 6 x black

2. Flexible jumper

Order number: VEHZ0009

Flexible jumper to connect current outputs in parallel (up to 32 A) or to short-out the neutrals of binary inputs.

Specification: 1000 V/32 A

Amount supplied: 4 x black
3. Flexible terminal adapter

Flexible terminal adapter to connect to screw-clamp terminals.

Specification: 1000 V/32 A
Amount supplied: 12 pieces

9.7.2 Optional CMC Wiring Accessory Package

Order number: VEHS0009

Order number: VEHZ0060

The CMC Wiring Accessory Package contains the following articles:
1. Flexible test lead adapter

5 cm (2") test lead adapter with retractable sleeve to connect the CMC 356 output to non-safety sockets in combination with a regular flexible 2 m (6 ft.) test lead as shown at section 9.7.1.

Specification: 600 V/32 A
Amount: 6 x red, 6 x black

2. Flexible jumper

Flexible jumper to connect current outputs in parallel (up to 32 A) or to short-out the neutrals of binary inputs. Identical to article of standard delivery scope listed under 9.7.1.

Specification: 1000 V/32 A
Amount: 4 x black

3. Crocodile clamp

Crocodile clamps for secondary side to connect to pins or screw bolts.

Specification: 1000 V/32 A
Amount: 4 x red, 4 x black
4. Flexible terminal adapter

Flexible terminal adapter to connect to screw-clamp terminals. Identical to article of standard delivery scope listed under 9.7.1.

Specification: 1000 V/32 A

Amount: 12 pieces

5. M4 (0.15”) Cable Lug Adapters

Cable lug adapters for M4 (0.15”) screws to connect regular test leads to screw-clamp terminals of SEL/ABB/GE relays (and others).

Specification: 1000 V/20 A

Amount: 20 pieces

6. M5 (0.2”) Cable Lug Adapters

Cable lug adapters for M5 (0.2”) screws to connect regular test leads to screw-clamp terminals of SEL/ABB/GE relays (and others).

Specification: 1000 V/20 A

Amount: 10 pieces

7. Cable Tie (Velcro fastener)

Cable Tie (Velcro fastener), length 150 mm (6”), black.

Amount: 10 pieces
9.8 Ordering Information

This section lists the order numbers for optional equipment of the CMC 356 test set.

Figure 9-23: Connection cables I

Figure 9-24: Connection cables II
Table 9-5: Order numbers overview

<table>
<thead>
<tr>
<th>Article</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMC 356 options (factory upgrade)</td>
<td></td>
</tr>
<tr>
<td>ELT-1 Enerlyzer and Transducer Inputs</td>
<td>VEHO2802</td>
</tr>
<tr>
<td>(→ section 6.10)</td>
<td></td>
</tr>
<tr>
<td>LLO-2 Low level outputs LL out 7 - 12</td>
<td>VEHO2804</td>
</tr>
<tr>
<td>(→ section 6.11)</td>
<td></td>
</tr>
<tr>
<td>FL-6 Constraints the maximum output</td>
<td>VEHO0599</td>
</tr>
<tr>
<td>frequency to 599 Hz (→ section 2.1)</td>
<td></td>
</tr>
<tr>
<td>Amplifiers (→ section 9.1)</td>
<td></td>
</tr>
<tr>
<td>CMA 156 Current amplifier (6×25 A)</td>
<td>VEHV1010</td>
</tr>
<tr>
<td>CMS 156 Voltage/current amplifier (3×250 V, 3×25 A)</td>
<td>VEHV1030</td>
</tr>
<tr>
<td>CMControl-6 (→ section 9.2)</td>
<td></td>
</tr>
<tr>
<td>CMControl-6; upgrade for an existing CMC 356 (includes soft bag VEHP0014)</td>
<td>VEHO2806</td>
</tr>
<tr>
<td>CMControl-6; add-on for a new CMC 356</td>
<td>VEHO2805</td>
</tr>
<tr>
<td>CMIRIG-B Interface box (→ section 9.3.2)</td>
<td></td>
</tr>
<tr>
<td>CMIRIG-B Interface box incl. all accessories</td>
<td>VEHZ1150</td>
</tr>
<tr>
<td>CMIRIG-B Interface box</td>
<td>VEHZ1151</td>
</tr>
<tr>
<td>Connection cable CMIRIG-B ↔ CMC 356</td>
<td>VEHK0003</td>
</tr>
<tr>
<td>CMGPS Synchronization unit (→ section 9.3.1)</td>
<td></td>
</tr>
<tr>
<td>CMGPS Synchronization unit, consisting of:</td>
<td>VEHZ3000</td>
</tr>
<tr>
<td>- CMGPS synchronization unit</td>
<td></td>
</tr>
<tr>
<td>- antenna</td>
<td></td>
</tr>
<tr>
<td>- 15 m antenna cable</td>
<td></td>
</tr>
<tr>
<td>- power supply unit</td>
<td></td>
</tr>
<tr>
<td>- 16-pole LEMO cable CMC-CMGPS</td>
<td></td>
</tr>
<tr>
<td>- carrying bag</td>
<td></td>
</tr>
<tr>
<td>2 × 20 m antenna extension cable and SMA adapter</td>
<td>VEHZ3003</td>
</tr>
<tr>
<td>100TX to 100FX-SC Converter (→ section 9.4)</td>
<td></td>
</tr>
<tr>
<td>Converter for data transfer from a 10/100Base-TX copper to a fiber interface.</td>
<td>VEHZ0021</td>
</tr>
<tr>
<td>Current clamp (→ section 9.5)</td>
<td></td>
</tr>
<tr>
<td>C-PROBE1 Current clamp (10/80 A range, DC ... 10 kHz)</td>
<td>VEHZ4000</td>
</tr>
<tr>
<td>Article</td>
<td>Order no.</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Meter testing accessories</td>
<td></td>
</tr>
<tr>
<td>OSH256 Passive scanning head, suction and adhesive fixation (→ section 9.6.1)</td>
<td>VEHZ2006</td>
</tr>
<tr>
<td>IFB256 Interface Box for scanning head OSH256; used for relay testing when binary information originates from a relay's LED. (→ section 9.6.2)</td>
<td>VEHZ1152</td>
</tr>
<tr>
<td>TK 326 Active and passive scanning head, mechanical fixation (→ section 9.6.3)</td>
<td>VEHZ2008</td>
</tr>
<tr>
<td>TVS 6.15/1 Passive scanning head, magnetic fixation (→ section 9.6.4)</td>
<td>VEHZ2004</td>
</tr>
<tr>
<td>Adapter cable for scanning heads (→ section 9.6.5)</td>
<td>VEHK0010</td>
</tr>
<tr>
<td>CMLIB B Interface box for - testing with reference meters - accessing the transistor outputs. (→ section 9.6.6)</td>
<td>VEHZ1102</td>
</tr>
<tr>
<td>CMLIB A Interface box to - connect non-OMICRON amplifiers - tap the analog low level signal outputs of an amplifier.</td>
<td>VEHZ1101</td>
</tr>
<tr>
<td>CMLIB A cable BNC to BNC</td>
<td>VEHK0008</td>
</tr>
<tr>
<td>CMLIB A cable BNC to 4 mm banana (→ section 9.6.7)</td>
<td>VEHK0005</td>
</tr>
<tr>
<td>CPOL Polarity Tester (→ section 9.6.8)</td>
<td>VEHZ0645</td>
</tr>
<tr>
<td>Connection cable for REF 54x Relays (ABB) with low level signal inputs (→ section 9.6.9)</td>
<td>VEHK0120</td>
</tr>
<tr>
<td>C-Shunt Precision shunts for current measurements - C-Shunt 1: 0.001 Ω - C-Shunt 10: 0.01 Ω (→ section 9.6.10)</td>
<td>VEHZ0080 VEHZ0081</td>
</tr>
<tr>
<td>Connector</td>
<td></td>
</tr>
<tr>
<td>Plug for generator combination socket (→ section 5.1.1)</td>
<td>VEHS0103</td>
</tr>
<tr>
<td>Article</td>
<td>Order no.</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Cables</td>
<td></td>
</tr>
<tr>
<td>Ethernet cable 1.5 m /5 ft.</td>
<td>VEHK0022</td>
</tr>
<tr>
<td>Ethernet cable 3.0 m/10 ft.</td>
<td>VEHK0622</td>
</tr>
<tr>
<td>Connection cable CMC 356-to-amplifier, CMLIB A/B or CMGPS</td>
<td>VEHK0003</td>
</tr>
<tr>
<td>Generator combination cable</td>
<td>VEHK0103</td>
</tr>
<tr>
<td>Wiring accessories (~ section 9.7)</td>
<td></td>
</tr>
<tr>
<td>Flexible test lead 1000 V/32 A, 6 x red, 6 x black</td>
<td>VEHK0112</td>
</tr>
<tr>
<td>CMC Wiring Accessory Package</td>
<td>VEHZ0060</td>
</tr>
<tr>
<td>containing the following items:</td>
<td></td>
</tr>
<tr>
<td>1. Flexible test lead with retractable sleeve, 600 V/32 A, 6 x red, 6 x black</td>
<td></td>
</tr>
<tr>
<td>2. Flexible jumper, 600 V/32 A, 4 x black</td>
<td></td>
</tr>
<tr>
<td>3. Crocodile clamps, 1000 V/32 A, 4 x red, 4 x black</td>
<td></td>
</tr>
<tr>
<td>4. Flexible terminal adapter, 1000 V/32 A, black, 12 pieces</td>
<td></td>
</tr>
<tr>
<td>5. M4 (0.15") Cable Lug Adapters, 1000 V/20 A, 20 pieces</td>
<td></td>
</tr>
<tr>
<td>6. M5 (0.2") Cable Lug Adapters, 1000 V/20 A, 10 pieces</td>
<td></td>
</tr>
<tr>
<td>7. Cable Tie (Velcro fastener), length 150 mm (6"), 10 pieces</td>
<td></td>
</tr>
<tr>
<td>8. OMICRON Accessory Bag, 1 piece</td>
<td></td>
</tr>
<tr>
<td>Article</td>
<td>Order no.</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Heavy-duty transport case with wheels and extendable handle for the CMC 356 test set with or without CMControl-6, for CMB IO-7, and for CMA or CMS amplifiers.</td>
<td>VEHP0021</td>
</tr>
<tr>
<td>Soft bag for CMC 356 test set</td>
<td>VEHP0012</td>
</tr>
<tr>
<td>Soft bag for CMC 356 test set with attached CMControl-6</td>
<td>VEHP0014</td>
</tr>
</tbody>
</table>
APPENDIX

The OMICRON Bootloader software

The OMICRON Bootloader software includes software parts developed by:

• Intel Corporation (IXP400 SW Release version 2.3)
• Intrinsyc Software (Intrinsyc Bootloader)
• Swedish Institute of Computer Science, Adam Dunkels (lwIP TCP/IP stack)
• Mark Adler (puff - decompress the deflate data format)
• Jean-loup Gailly and Mark Adler ("zlib" general purpose compression library)

The following copyright notices reproduce entirely the copyright notices provided by the source code owners.

IXP400 SW Release version 2.3

Copyright (c) 2001-2005, Intel Corporation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Intrinsyc Bootloader

Copyright (c) 2001-2002, Intrinsyc Software. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgement: This product includes software developed by Intrinsyc Software.

4. The name of Intrinsyc may not be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by Intrinsyc software and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall Intrinsyc software be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

IwIP TCP/IP stack

Author: Adam Dunkels <adam@sics.se>

Copyright (c) 2001, 2002 Swedish Institute of Computer Science. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the author "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the author be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

puff (Mark Adler)

This software is provided 'as-is', without any express or implied warranty. In no event will the author be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Mark Adler <madler@alumni.caltech.edu>
zlib (Jean-loup Gailly and Mark Adler)

Copyright (C) 1995-2002 Jean-loup Gailly and Mark Adler.

This software is provided 'as-is', without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote
the original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented
as being the original software.

3. This notice may not be removed or altered from any source distribution.

Mark Adler <madler@alumni.caltech.edu>
Jean-loup Gailly <jloup@gzip.org>

The data format used by the zlib library is described by RFCs (Request for Comments) 1950 to
1952 in the files ftp://ds.internic.net/rfc/rfc1950.txt (zlib format), rfc1951.txt (deflate format) and
rfc1952.txt (gzip format).
Contact Information / Technical Support

North and South America
OMICRON electronics Corp. USA
12 Greenway Plaza, Suite 1510
Houston, TX 77046, USA
Phone: +1 713 830-4660 or 1 800 OMICRON
E-Mail: techsupport@omicronusa.com
Web: http://www.omicronusa.com

Asia, Pacific
OMICRON electronics Asia Ltd.
Suite 2006, 20/F, Tower 2
The Gateway, Harbour City
Kowloon, Hong Kong S.A.R.
Phone: +852 2634 0377
E-Mail: support@asia.omicron.at
Web: http://www.omicron.at

Europe, Africa, Middle East
OMICRON electronics GmbH
Oberes Ried 1
6833 Klaus, Austria
Phone: +43 5523 507-333
E-Mail: support@omicron.at
Web: http://www.omicron.at

For addresses of OMICRON offices with customer service centers, regional sales offices or offices for training, consulting and commissioning, please see the Contact section of our Web site http://www.omicron.at.
INDEX

Numerics

599 Hz restriction .. 13, 41, 48, 53, 128

A

accessories
adapter cable for scanning heads 117
CMA/S current/voltage amplifiers 105
CMGPS ... 107
CMIRIG-B .. 109
CMLIB B ... 118
connecting cables 123
C-PROBE1 ... 112
ordering information 127
wiring accessories 123
accuracy
AC measurements 74
amplitude accuracy of amplifiers 105
AUX DC supply 57
CMGPS ... 107
CMIRIG-B .. 109
DC current measurement input 70
DC voltage measurement input 70
frequency measurement 79
LL outputs (SELV) 53
output power ... 51
phase measurement 77
power measurement 80
signal generation 25
active power calculation 80
address
OMICRON addresses 137
altitude
max. altitude for operation 65
amplifier
CMA current amplifier 105
CMS voltage amplifier 105
current amplifier (output) of CMC 356 22
voltage amplifier (output) of CMC 356 21
amplifiers
ordering information 128
apparent power calculation 80
B

binary inputs
general data ... 58, 72
binary outputs
binary output relays 1-4 56
LL binary outputs 54

C

calibration
valid period of factory calibration 39
CAN/CSA
certified safety standards 66
CE
certified safety standards 66
cleaning of CMC 356 65
CMControl .. 106
CMGPS ... 107
ordering information 128
CMIRIG-B .. 109
ordering information 128
CMLIB B ... 118
connecting cables
how to use safely 14
ordering information 127
C
contact information
OMICRON addresses ..137
converter for fiber optics ..111
counter inputs 100 kHz (LL)61
C-PROBE1
ordering information ...128
C-Shunt (accessory) ...122
current
max. input current INPUT IDC70
max. input current INPUT VDC70
current clamp C-PROBE1 ..112

D
DC current measurement input70
DC measurement (ANALOG DC INPUT)70
DC voltage measurement input70
debouncing input signals ..60
deglitching input signals ...60
dimensions of CMC 356 ...65

E
ECM-compatibility ...66
electromagnetic compatibility (EMC)66
ELT-1 option ..67, 128
e-mail
OMICRON addresses ..137
EN
certified safety standards66
Ethernet
Power over Ethernet ..63
Ethernet cables
ordering information ...127
external interface (ext.Interf.)54

F
fiber optics ..111
FL-6 option (599 Hz restriction)13, 41, 48, 53, 128
frequency
output accuracy ... 41
output drift .. 41
output range settings ... 41
output resolution .. 41
front panel components of CMC 35627
front panel control CMControl106
fuse
changing the .. 10
type ... 39

G
generator combination socket
ordering information ...127
voltage & current outputs30

time

time

H
hotline ...137
housing specs of CMC 35665
humidity, relative ...65

I
IEC
certified safety standards66
impedance
max. input impedance INPUT IDC70
max. input impedance INPUT VDC70
increasing output power (operating modes)91
I

inputs
 analog DC input UDC/IDC69
 binary inputs 1-10 .. 58, 72
 counter input 100 kHz (LL)61
 DC measurement ...70
 DC measurement (ANALOG DC INPUT)70
ISO9001
 certified safety standards66

L

LL out (SELV low level outputs)52
LLO-2 option ..90, 128

M

measurement range
 \(I_{\text{DC}} \) measurement input70
 \(U_{\text{DC}} \) measurement input70
meter testing
 CMLIB B ...118
 ordering information for accessories129

N

nominal mains current ..39

O

operating temperature of CMC 35665
optical scanning heads
 accessories ..115
option
 ELT-1 ...67, 128
 LLO-2 ..90, 128
options
 for CMC 356 (overview) 12
 option ELT-1 .. 67
 option LLO-2 ... 90
ordering information for CMC 356 accessories 127
OSH256
 scanning head ..113
output power
 per phase when group A || group B 44
 voltage outputs (3-phase & single phase) 48
outputs
 current output groups A & B 43
 low-level outputs (LL out) 52
 serial connection CURRENT A - CURRENT B ... 92
 voltage (technical data) .. 48
overheating
 of current or voltage amplifier 103
overload warning
 current amplifier .. 22
 voltage amplifier .. 21

P

phase
 output error .. 43, 48, 53
 output range .. 41
 output resolution .. 41
PoE (Power over Ethernet) .. 63
power
 active power calculation 80
 apparent power calculation 80
 reactive power calculation 80
 weak mains supply and output power (relation) 51
power supply range of CMC 356 25
R
reactive power calculation ..80
relative humidity ..65
resolution
 current outputs ..43
 LL out 1-6 ..53
 phase output ...41
 voltage outputs ..48

S
safety
certified safety standards66
instructions ..8
use of connecting cables14
scanning heads
 accessories ..115
 ordering information129
self-test of hardware18
SELV
 low level outputs 1-652
 optional connector LL out 7-1212, 90
serial connection CURRENT A - CURRENT B92
shock and vibration (technical data)65
shutdown due to overheating103
signal generation ..25
standards
 certified safety standards66
storage temperature65
supply voltage and output power (relation)51
synchronization via GPS36, 107
synchronized operation41
system components of CMC 35613

T
Technical Support ..137
temperature
 operating temperature of CMC 35665
 storage temperature65
temperature drift of output signals41
test
 hardware self-test18
test leads
 accessories ..123
Test Universe software7
TK 326
 scanning head ..115
Trigger on overload (current outputs)43
TVS 6.15/1
 scanning head ..116

U
UL
certified safety standards66

V
vibration ..65
voltage
 max. input voltage INPUT VDC70
 voltage outputs (technical data)48

W
weak mains supply and output power (relation)51
Web site
 OMICRON Web site137
weight of CMC 356 ...65
wiring accessory package (ordering information)124